
 
Physics 273 - Homework #5 

 
1) Consider two coupled mechanical oscillators. Each of the two masses are connected to 
a fixed wall through a spring with spring constant (k). The masses are connected to each 
other with a spring with spring constant (k12). 
 
a) Suppose we hold one of the two masses fixed, so it cannot move. What is the natural 
frequency of the other mass? 
 
b) Now we release the second oscillator. Compare the natural frequency from part (a) to 
the two normal mode frequencies of the double oscillator. Are they smaller or larger? 
Explain. 
 
c) What happens to the two normal mode frequencies of the system in the limit where the 
coupling spring constant (k12) becomes very large and very small? Explain. 
 
2) Consider again two coupled mechanical oscillators. As usual, each oscillator is 
connected to a wall by a spring with spring constant (k), and the two masses are coupled 
together by a spring with spring constant (k12). Suppose that our initial conditions are that 
the first oscillator has an initial velocity of (v0) and an initial position of zero, and the 
second oscillator starts with an initial velocity and position of zero.  
 

a) Apply these initial conditions to find x1(t) and x2(t). 
 
b) Let k = 1 N/m, k12 = 0.25 N/m, m = 1 kg, and v0 = 1 m/s. Make a plot of the 

positions of both masses from t = 0 to t = 30 seconds. Please put both x1(t) and 
x2(t) on the same plot. 

 
 
3) For the loaded string, the amplitude relationships which define the normal modes are 
described by the expression: 
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where (p) tells us which mass we are talking about, (n) tells us which normal mode we 
are talking about, and N is the total number of masses on the string. It is convenient to re-
write this expression in a vector notation: 
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In this expression, the first component of the vector describes mass #1, the second 
component describes mass #2, ect. Since there are N normal modes, there will be N such 
vectors. These are the normal mode eigenvectors. 
 



a) Write down in explicit numerical form the vectors 1q
 and 2q

 for the N = 2 case. 
Please give a numerical value for each component of the vectors, accurate to three 
decimal places.  
 
b) Calculate the dot products for all pairs of vectors for the N = 2 case: 11 qq  ⋅  , 

21 qq  ⋅ , and 22 qq 
⋅ . 

 
c) Repeat part (a) for the N = 3 case, writing down the explicit numerical form for 
the three eigenvectors. 
 
d) Repeat part (b) for the N = 3 case. You will need to calculate six unique dot 
products. 
 
e) Repeat part (a) for the N = 4 case, writing down the explicit numerical form for 
the four eigenvectors. 
 
f) Repeat part (b) for the N = 4 case. You will need to calculate the 10 unique dot 
products. 
 
g) What pattern do you see in the dot products of these eigenvectors? 

 
4) Consider a loaded string consisting of three particles of mass (m) regularly spaced on 
the string. At t = 0 the center particle is displaced a distance (a) from its equilibrium 
position. (The other two particles are located at their equilibrium positions.) We release 
all three particles with an initial velocity of zero.  
 

a) Apply these initial conditions to the solution of the loaded string (which we found 
in class) to find the position of all three particles as a function of time. 

 
b) Let the string tension be T = 10 N, m = 1 kg, and let the distance between the 

masses on the string be 0.1 m. Also let the initial displacement of mass 2 be 0.01 
m. Make a plot of the positions of all three masses from t = 0 to t = 10 seconds. 
Please put x1(t), x2(t), and x3(t) on the same plot. 

 
5) Ringing and damping of a mechanical oscillator (numerical). Make a copy of your 
numerical solution to Homework #4 problem #2 (forced oscillator with damping). In this 
problem we will change the forcing function to the following step function (or square 
wave function): 

F(t) =
1.0 Newtons, 0 < t <10 s
0.0 Newtons, 10 s < t < 20 s
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This forcing function repeats itself thereafter with a period of 20 seconds. Hint: If you are 
using excel, one way to implement this forcing function in your numerical calculation is 
to create a new column which contains the value of the forcing function at each moment 
in time. You can then reference this column when calculating the acceleration. 
 



a) Let x0 = 0.0 m, v0 = 0.0 m/s, m = 1 kg, k = 30 N/m, and b = 2 N/(m/s). Use a time 
step of 0.01 seconds, and calculate for 4000 steps (a total of 40 seconds). Print out a 
plot the position of the oscillator as a function of time.  

 
b) In your solution you should see a phenomena called “ringing”. Measure the angular 

frequency of the ringing, and compare it to the oscillation frequency that you would 
expect for this oscillator. 

 
c) The frequency of a damped oscillator is given by 
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Suppose we increase the drag coefficient (b or γ) until ωd = 0.0. This condition is called 
“critical damping”, and it is the condition for all oscillations to be eliminated. Calculate 
the value of the drag coefficient (b) which achieves critical damping for the oscillator 
parameters described in part (a). 
 

d) Starting with a drag coefficient of b = 2 N/(m/s), increase (b) one unit at a time up to 
20 N/(m/s), and observe the effect on the oscillator’s position as a function of time. 
Now set (b) equal to the critical value that you calculated in part (c), and print out a 
plot of the oscillator’s position for this situation.  

 
Comment: In real mechanical and electrical systems where oscillations are undesirable, 
the components will often be chosen so that the system is critically damped. For example, 
a bridge might be designed to be critically damped to prevent large oscillations in the 
event of an earthquake. 
 
e) When the drag coefficient is increased beyond the critical value, we say that the system 
is “over-damped”. Just like critically damped systems, over-damped systems also do not 
oscillate, however, they take longer to return to equilibrium after a shock. To see the 
response of an over-damped system, set b = 50 N/(m/s), and print out a plot of the 
oscillator’s position as a function of time.

 

 
 
 
 
 
 


