Dispersion
We have been studying systems which are governed by the classical wave equation.

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v_{p}^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

V_{p} is the "phase velocity", which is the speed at which a plaint peak or trough in the wave will travel.

The normal modes an the harmonic solutions to this equation. The t are

$$
y_{n}(x)=A e^{i k x}
$$

(well that when there an no boundary conditions, K is continaom)
with associster frequency

$$
\omega=k v_{p}
$$

Then the tim development of the normal mode is

$$
y_{n}(x, t)=\left(A e^{i k x}\right) e^{i \omega t}=A e^{i(k x+\omega t)}
$$

We can explicitly confirm that this satisiver the equation of motion.

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial x^{2}}=-k^{2} A e^{i(k x+\omega t)} \\
& \frac{\partial^{2} y}{\partial t^{2}}=-\omega^{2} A e^{i(k x+\omega t)}
\end{aligned}
$$

Substitute into Eq. of motion:

$$
\begin{aligned}
-k^{2} A c^{i(k x+\omega t)} & \stackrel{?}{=}-\frac{1}{v_{p}^{2}}\left(-\omega^{2} A e^{i(k x+\omega t)}\right. \\
4 \alpha_{p}-k^{2} & \stackrel{?}{=} \frac{-\omega^{2}}{v_{p}^{2}} \\
v_{p} & =\frac{\omega}{k} .
\end{aligned}
$$

We see That the normal mode Ae ${ }^{i(k x+\omega+1)}$ is a solution, as long as the phase velocity is wok. We can rewrite this condition.

$$
\omega=V_{p} k
$$

This equation describes all the physics of this system, We can think of this equation as telling us how the normal mode frequency (ω) depends on the normal mode wan number (k):

$$
\begin{aligned}
& \omega(k)=\frac{V_{p} K}{\uparrow} \\
& \uparrow \text { normal mode }
\end{aligned}
$$

frequency depends
on the wave number.
$\omega(k)$

It may seem like there is no other possible relationship between wand k, but this particular linear relationship only holds tron for the classical wave equation. If any other equation of motion is used, then in general there will be some other relaxiouship between w and k.

An example is the loaded string. For that system, the normal mode frequencus are

$$
\cos _{n}=2 \omega_{0} \sin \left(\frac{n \pi}{2(N+1)}\right)
$$

We can rewrite this as an $\omega(k)$ function:

$$
\omega_{n}=2 \omega_{0} \sin (\underbrace{\frac{n \pi l}{2(N+1) l}}_{L})=2 \omega_{0} \sin \left(\frac{n \pi l}{2 L}\right)
$$

$K_{n}=\frac{n \pi}{2}$, so we can rewrite as

$$
\omega\left(k_{n}\right)=2 \omega_{0} \sin \left(\frac{k_{0}}{2}\right)
$$

where n goes from 1 to N.

This is a non-linear relationship between K_{n} and ω_{n}

$$
=\frac{N \pi}{L}
$$

The reason why this system does not have a linear relationship between $\omega \& k$ is because its equation of motion is nut the simple classical wave equation Its equation is

$$
\ddot{y}_{p}+2 \omega_{0}^{2} y_{p}-\omega_{0}^{2}\left(y_{p+1}+y_{p-1}\right)=\phi
$$

In general, the mlatiombip between ω \& K is cletomined by the equation ot motion, which is determined by the physics of the system.

Notice that when $N \rightarrow \infty$, The loaded string becomes a continuous siring ass.

This is equivalent to zooming - in on The linear part of the equation near $k_{n}=\varnothing$.

For any ste system, the relationship between w and k is called the "dispersion relation" The Classical ware equation has a linear dispersion relation:
$\omega(k)=v_{p} K / \leqslant$ linear dispersion relation (classical wave equation)

Whereas, The loaded string has a non-linear dispersion M(ation: $\omega\left(k_{n}\right)=2 \omega_{0} \sin \left(\frac{k_{n} l}{2}\right) \leqslant$ non-linear dispersion relation (loaded string)
A system which has a linear dispersion relation has a special property: A propagating pulse will travel without changing its shape: pulse Shape
at $t=0$

We can show this as follows. The pulse can be described at a sum over normal modes.
But the normal modes are continuous so the sum over normal modes is a Fowner Transform:

$$
y(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i(k x-\omega t)}
$$

Now suppose that the system has a linear dispersion relation:

$$
\omega=v_{p} k
$$

Then we have

$$
\begin{aligned}
y(x,+) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i\left(k x-\left(v_{p} k\right) t\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k(\underbrace{\left.x-v_{p} t\right)}_{\uparrow}}
\end{aligned}
$$

This says that as time goes formane, if wa keep advances X at speed V_{p}, then the value of y will stay the same. So the shape of the pulse does not change

Thentore, if $\omega=\gamma_{p} k$ for the system, then pulses do not disperse. They maintain Their shape.

A linear dispersion relation means that pulses do not disperse.

This is a special case behavior for systems wite linear dispersion relations. But suppon the un have a non-linear dispersion relation.
For example, suppose
$\omega \sim K^{2}$. This happens in quantum mechanics when clescribing a free particle.
In that case,

$$
w=\frac{\hbar k^{2}}{2 m} .
$$

How does a pulse propagate in a sp, ter like this?

$$
\begin{aligned}
y(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k x} e^{-i \omega t} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k x} e^{-i\left(\frac{\left(\hbar k^{2}\right.}{2 m}\right)+} \\
& =\frac{1}{\sqrt{2} \pi} \int_{-\infty}^{\infty} d k A(k) e^{i k} \underbrace{\left(x-\frac{\hbar k}{2 m} t\right)}_{\sim}
\end{aligned}
$$

Here, a_{1} time goes forward, we need to advance x at a speed of $v_{p}=\frac{\hbar k}{2 m}$ to keep the argument of the exponertios, the sumac.

But the speed $v_{p}=\frac{\hbar k}{2 m}$ is different for every warrant waumber（ K ）．That is each normal mode advances at its own velocity， they do not advance together．This means that景 the various normed modes will disperse，with some travelling fast，and some travelling slowly， and the pulse will dissappea．

$$
\begin{array}{ccc}
t=\phi & t=t_{1} & t=t_{2} \\
\text { pulse }
\end{array}
$$

Further thoughts on Dispersion.
Consider a perfut traveling wave; wavelemts λ_{1} period T.

At one location, say $x=0$, pas time goes forward.

The wavelugtt is λ, and the period is I.
By definition of λ and $T_{\text {, }}$ this wave advances at a speed of

$$
V=\frac{\lambda}{T}=\frac{\left(\frac{2 \pi}{K}\right)}{\left(\frac{2 \pi}{\omega}\right)}=\frac{\omega}{K}
$$

This is the phase velocity, by definition.

$$
V_{\text {phase }} \equiv \frac{\omega}{K} \text { by definition }
$$

The phase velocity of a perfect travelling wave is the ratio of ω and k, by definition.

Lets plot w \& k for this travelling wave:
ω

By definition, the phase velocity of this wave is the slope of a lime from $(0,0)$, to (ω, k) :

Now suppose our physical system is described by The classical wave equation:

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial x^{2}}= & \alpha \frac{\partial^{2} y}{\partial t^{2}} \\
& \sum \text { some constant. } .
\end{aligned}
$$

If the physics system is a string with tension (T) and mass density (ρ), then me know that

$$
\alpha=\frac{9}{7}
$$

Or, if the physical system is electromagnetic waves in vacuum, then

$$
\alpha=\mu_{0} \varepsilon_{0}
$$

Let's guess a travelling wave solution to the classical wan equation:

$$
y(x, t)=A e^{i(k x-\omega t)}
$$

What requirements does this place on $k \& \omega$?
Let's substitute:

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial x^{2}}=-k^{2}\left(A e^{i(k x-\omega t)}\right) \\
& \frac{\partial^{2} y}{\partial t^{2}}=-\omega^{2}\left(A e^{i(k x-\omega t)}\right)
\end{aligned}
$$

So the Classical Warm Equation says:

$$
\begin{gathered}
{\left[-k^{2}\left(A e^{i(k x-\omega t)}\right)\right]=\alpha\left[\left(-\omega^{2}\left(A e^{i(k x-\omega t)}\right)\right)\right]} \\
-k^{2}=-\alpha \omega^{2} \\
\omega^{2}=\frac{1}{\alpha} k^{2}
\end{gathered}
$$

or $\frac{\omega}{k}=\frac{1}{\sqrt{\alpha}}=$ constant
Now, by definition, $\frac{\omega}{K}=$ phase velocity $=V_{p}$. So the classical wave equation requires that the phase velocity is a constant, independent of k, and independent of ω.

So if un plot $w \& k$ for a system described by the classical wave equation，every valid travelling wave will fall on a straight lime the passes through the origin：

Every travelling wave has the same ratio：$\frac{\omega}{K}$ ．

So what the classical wame equation requires is that the Frequency（ ω ）责，be directly proportion e to（ K ）（the wave number）．

Conversely，we could say that any system that has direct proportionality between w \＆K is described by the classical wave equation

So let β be some constant．If un e find then a syitem for which

$$
\omega=\beta k,
$$

Then we can immediately conclude that the equation of motion of the system is the classical wave equation. Further, we can immedoritely infer that the phase velocity is

$$
\begin{aligned}
& V_{\text {phase }} \equiv \frac{\omega}{k} \text { (by definition) } \\
& V_{\text {phase }}=\frac{(\beta k)}{k} \text { for this particular } \\
& \text { system } \\
& \text { phase }=\beta=\text { a constant }
\end{aligned}
$$

But in general we should not expect that the system is described by the classical wave equation. Then w is a more complicated function of K :

$$
\omega(k)=\text { some complicated functor of }(k) \text {. }
$$

It willstill be true that the ratio of ω \& k is still the phase velocity, because this is true by definition.

$$
V_{\text {phase }} \equiv \frac{\omega(k)}{k} \text { by definition. }
$$

So for a more complicated system, the ratio $\frac{w(k)}{k}$ will not be a constant.

For example, for the loaded string,

$$
\omega\left(k_{n}\right)=2 \omega_{0} \sin \left(\frac{k_{n} l}{2}\right) \quad \text { (kn is discrete }
$$ for this system)

For this system

$$
v_{\text {phase }}=\frac{\omega\left(k_{n}\right)}{k_{n}}=\underbrace{\omega_{0}\left(\frac{\sin \left(\frac{k_{n} l}{2}\right)}{k_{n}}\right)}
$$

not a constant, depends upon K_{n}.

The $\omega(k)$ function is called the "dispersion relation", and the ratio of the dispersion relation and k is the phase velocity. The dispersion relation for the classical wave equation is

$$
W(\text { KC }=(\text { som constant }) K
$$

and the phase velocity for the classical wave equation

$$
\begin{aligned}
V_{\text {phase }}=\frac{\omega(k)}{k} & =\frac{(\text { some constant)k}}{k} \\
V_{\text {phase }} & =\text { some constant }
\end{aligned}
$$

So we can write is
$\omega(k)=r_{\text {phase k }}$. for the classics wave equation.
Another important case is free particles in quantum mechanics. These particles have then Following dispersion relation:

$$
\omega(k)=4 \text { 相偻 } \frac{\hbar k^{2}}{2 m}<\text { quatum free particle }
$$

and (thee phase velours is

$$
\begin{aligned}
V_{\text {phase }}=\frac{\omega(k)}{k}=\frac{\left(\frac{\hbar k^{2}}{2 m}\right)}{k}= & \frac{\hbar k}{2 m}=\begin{array}{c}
\text { not a } \\
\uparrow \\
\\
\\
\\
\text { deopindarts upon } k
\end{array}
\end{aligned}
$$

It looks lite,

The phase velocity increases linearly with k :

Now consider a generic system, described by some dispersion relation w(k). How would a pulse travel through a this system?
Answer: the pulse is a linear combination of trailing waves, and each troweling wave propagates forever.
for some $A(k)$ which describes the pulse in k-spaa Now the $\omega=\omega(k)$, so

$$
p^{u l j}=y(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k\left(x-\frac{\omega(k)}{k} t\right)}
$$

Now suppose the system is has a simple disposion relation: $\omega(k)=($ some constant $) k=V_{\text {phase }} k$ Then

$$
y_{\sin p}(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k\left(x-v_{\text {phat }} t\right)}
$$

or suppose that the system is a quarter free particle:

$$
\text { Ypeantoun }(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k\left(x-\left(\frac{\pi k}{2 m}\right)+1\right.}
$$

For ysimple, wa can surf along at a constant value of y, if un advance x at the constant rate of V phase. In other wards, The entire pulse advances without changizs its shape at a speed of Vphase:

But what about the quanturn free particle? To keep the phase constant, un have to advance at a different rate for every wavenmber K which makes up the pulse.

$$
\text { Yquartion }=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k(\underbrace{\left.x-\frac{\hbar k}{2 m} t\right)}_{\uparrow}}
$$

There is no way to hold this constant for all K at the same time.

The problem is that all the component traveling waves Which mike up the pulse ane traveling at different velocities. In other words, the are dispersing. And the pule will dissuppeen as it goes forward in time:

So the simple dispersion relation really means "no dispersion"

If $\omega(k)=$ (some constant) k, then
then will be no dispersive. Pulses will travel forever with the same shape.

Thentore the classical wane equation describes systems which have ho dispersion. In these A_{n} systems, a pulse con travel forever. example of this in nature is electromagnetic wares in vacuerm, or waves on an ideal string.)

Information transmishist trans and group velocity
A perfect perfect travelling wave cannot be used to communicate. Because it is a perfect wave, it extends in time to (tland $(\rightarrow$) infinity, and t in space to (t) and (t) infinity To communicate a message, I would need to alter the wane in some way: turn it orff, make it lager, change its frequency, etc. But doing ant of these thongs would mean this the wan is no louger perfect, because it tr would then have multiple frequency component?. So to send a message, I will need multiple frequencies at my disposal.

But if the medium is dispersive, then the various frequency components will all travel at different velocities, and my message will disperse. So then will be some limit to how fan t cm comrumizate.

However, there is a clever way to send information a much longer distance by using a small range of frequancig to create a pulse.
A) long as the dispersion relation is linear our that range of frequeies, tune car mare a pule what travels forever.
To illustrate, imagine that our dispersion relation is linear, but not directly proportional:

Since different waves have different phon velocities, this system is dispersive.
Now I create a pulse-like "eurelope function" compose of a range of wan numbers.

$$
F(x)=\text { a pulse-like Function }=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k
$$

Fowler tramions
$f(x)$ could bu a gaussion pulse, for exams k :

My claim is that I can make thin pulse propagate in tim forever by multuplyen $f(x)$ by a high frequency perfect travelling wave. Th high frequency wane is known as the "carrier wale"
so let

$$
Z(x)=(\text { pulse }) \times(\text { carrier })=f(x) e^{i k_{c} x}
$$

Where $k_{c}=$ wave number of the high frequency carrie wave
Now $z(x)$ looks like

$$
z(x) \uparrow \begin{array}{r}
\text { high frequen a carrier wame } \\
\text { multiplied bt the } \\
\text { pals function }
\end{array}
$$

The
Claim: ${ }^{\wedge}$ Pulse propasites with anesuen envelope function which does not dissipate:

"the speed at which the envelope propagates".

If this claim is true, then the pulse propagation will be described mathematically as

$f\left(x-v_{g} t\right)$ describes the envelope moving at the group velocity without changing its shape

Now we prove this:

Substitute the Fowir expression for the pulse.

$$
\begin{aligned}
z(x) & =\left[\frac{1}{\sqrt{v i}} \int_{-\infty}^{\infty} d k F(k) e^{i k x} d k\right] e^{i k e x} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F(k) e^{i(k+k c) x}
\end{aligned}
$$

Trick 1: Let Resuratio $K^{\prime}=K+k_{c}$.
Then $k=k^{\prime}-k_{c}$, and we ham

$$
z(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{\prime} F\left(k^{\prime}-k_{c}\right) e^{i k^{\prime} x}
$$

integrate over k^{\prime} now.
This. equation the transform of $z(x)$

But K^{\prime} is just a variable of integration. We can rename it K if wish w.

$$
z(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k_{x}} \leftarrow \text { Th Fowler Truatorm }
$$

Now we see that the Fowin Transform of $z(x)$ is $F\left(k-k_{c}\right)$.
Let's make $z(x)$ move aspca forward in time. To dothat we multiply each travelling wave component by $e^{-i \omega(k) t}$:

$$
\begin{aligned}
z(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k x} e^{-i \omega(k) t} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k\left(x-\frac{\omega(k)}{k} t\right)}
\end{aligned}
$$

Now un use our basic assumption: $\omega(k)$ is linear in k :

$$
\left.\omega(k)=\omega_{c}+\left(k-k_{c}\right) \frac{\partial \omega}{\partial k}\right)_{k_{c}}
$$

We call $\left.\frac{\partial w}{\partial k}\right|_{k_{c}}=V_{g}=$ "group velocity".
so $\quad \omega(k)=\omega_{c}+\left(k-k_{c}\right) v_{g}$.
Then ow travelling ware is

$$
\begin{aligned}
z(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k\left(x-\left(\frac{\omega_{c}}{k}+\frac{k v_{g}}{k}-\frac{k_{c} v_{g}}{k}\right)+\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k x} e^{-i \omega_{c} t} e^{-i k v_{g} t} e^{i k_{c} v_{g} t}
\end{aligned}
$$

Trick 2: Let $k^{\prime \prime} \equiv k-k_{e}$. The $k=k^{\prime \prime}+k_{e}$. Therefor

$$
\begin{aligned}
z(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{n} F\left(k^{n}\right) e^{i\left(k^{n}+k_{c}\right) x} e^{-i \omega_{c} t} e^{-i\left(k^{n}+k_{c}\right) v_{g} t} \cdot e^{i k_{c} v_{g} t} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{n} F\left(k^{n}\right) \underbrace{e^{i\left(k_{c} x-\omega_{c} t\right)}}_{\text {dorsnot do...l }} e^{i k^{n}\left(x-v_{g} t\right)}
\end{aligned}
$$

$$
z(x, t)=e^{i\left(k_{c} x-\omega_{c} t\right)}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{n} F\left(k^{4}\right) e^{i k^{4}\left(x-v_{g} t\right)}\right]
$$

This is the Fowler Transfer of the envelopefunction

$$
z(x,+)=F\left(x-v_{g} t\right) e^{i\left(k_{c} x-\omega_{c} t\right)}
$$

This is what we set out to prove: the envelope function $F(x)$ propagate, without changing its shape: $F(x) \rightarrow F\left(x-v_{s}+\right)$. The speed of envelope progagation, known as the group velocity, has bean determined to be

$$
v_{g}=\text { "group velocity" }=\frac{\partial \omega}{\partial k}\left(k=k_{c}\right)
$$

This result is important because any dispersion relation will be approximately linear over a small range of K. So pulses can be sent through any dispersion medina, as long as we use a suffrourtly small range of k to make ow pulses.

Example: Quartuon free particle

Sound Waves

Let Pressie be described by

$$
\begin{aligned}
& P(x, t)=P_{0}+P^{\prime}(x, t) \\
& \uparrow \hat{L}_{\text {deverace }} \\
& \begin{array}{l}
\text { average } \\
\text { equilibrium equilibrium }
\end{array} \\
& \text { pressure }
\end{aligned}
$$

And density be:

$$
\begin{array}{cc}
\rho(x, t)= & \rho_{0}+ \\
\uparrow & \rho^{\prime}(x, t) \\
\text { average } & \text { deviation }
\end{array}
$$

Then it can be shown that

$$
\frac{\partial^{2} p^{\prime}}{\partial x^{2}}=\frac{1}{v_{s}^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}} \text { Classical wave Eq. }
$$

when e $V_{s}=\sqrt{\frac{\gamma P_{0}}{\rho_{0}}}=\begin{aligned} & \text { velocity of } \\ & \text { sound }\end{aligned}$

For airs $\rho_{0}=1.2 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=1.2 \frac{\mathrm{~kg}_{g}}{\mathrm{~m}^{3}}$

$$
P_{0}=1 \mathrm{atan}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

and $r=\frac{\text { heat capacity at constant pressmen }}{\text { heat capacity at constant tolan }}$

$$
=1.4 \text { for arr }
$$

so $\quad v_{s} \approx 343 \mathrm{~m} / \mathrm{s}$
Impedance per unit area $=\rho_{0} v_{s}=\sqrt{\gamma \rho_{0} P_{0}} \approx 4 / 3 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{3}}$

$$
=\frac{\text { ratio of sound pressure }}{\text { to particle velocity }}
$$

The acoustic impedance of an a courtic component (such a) a loudspeaker or an organ pipe) i) the ratio of sound pressure to particle velocity at the connection point.

Normal Modes of open \& closed pipes

A pipe or tube can act as a simple musical instrument, with the boundary conditions determining the allowed normal modes (harmonic series). The rules are that
(1) A closed end forces the displacement of The air molecules to be zero, but the pressure change can be non-zero.
(2) An open end forks the pressure change to be zero, but the displacement of air molecules can be non-zero.

	molecule displaument
open end	possur chare
closed end	zero (anti-node) zero (node) (node)
zero	
non-zero (anti-node)	

For a tube closed at both ends, the fundamental molecule displaument

Pressure chime

The $1^{\text {sT }}$ harmonic (incl excited state)

So in this cure the allowed wave kn, th, are multiples of

$$
\begin{aligned}
& L=n\left(\frac{\lambda}{2}\right), n=1,2,3,4 \\
& \lambda_{n}=\frac{2 L}{n}
\end{aligned}
$$

The associated frequencies can be determined by requiring) that $($ wanelumts $) \times($ inquencx $)=$ speed of sound:

$$
\begin{aligned}
& \lambda_{n} F_{n}=v_{s} \\
& F_{n}=\frac{v_{s}}{\lambda_{n}}=\frac{n v_{s}}{2 L}
\end{aligned}
$$

Angular frequencies then are:

$$
\omega_{n}=2 \pi f_{n}=\frac{n \pi r_{s}}{L}
$$

But a tube closed at both ends would make sound that are difficult to hear. So consider one end open, like a trumpet. or clarinet:
molecule displacement

Fundamatil

(ir harmonic
z nd harmonic

Pressure Champ

The pattern is an odd number of $1 / 4$ wavelengths.

$$
\begin{aligned}
& L=n\left(\frac{\lambda_{n}}{4}\right), \quad \text { odd }(n) \text { only } \\
& \lambda_{n}=\frac{4 L}{n}, \text { odd (n) only. } \\
& f_{n}=\frac{v_{3}}{\lambda_{n}}=\frac{n v_{3}}{4 L}, n=1,3,5
\end{aligned}
$$

If the tube is a clarinet, we can effectively shorten the lemth by opening a kay in the middle. This forces the pressure champ to be zero at the location of the key, creations a node in the pressmen change and an anti-node in the molecular displacement.

A tube which is open at both ends, like some organ pipes, wilt have a different set of normal modes, again determined by the boundary conditions.

Mon on longitudinal Oscillations: Elastic Modules

Consider again masses connected by spring:

Assume that all springs on identical and all makes identical.

Eq. of Motion for particle $\# P$:

$$
\begin{aligned}
& m \ddot{x}_{p}=k\left(x_{p+1}-x_{p}\right)-k\left(x_{p}-x_{p-1}\right) \\
& \uparrow \\
& \left(m \omega_{0}^{2}\right) \quad\left(m \omega_{0}^{2}\right) \\
& \ddot{x}_{p}+2 \omega_{0}^{2} x_{p}-\omega_{0}^{2}\left(x_{p+1}+x_{p-1}\right)=\varnothing
\end{aligned}
$$

This Eq. of Motion is identical to that if The loaded string which moves in the transverse clirectoon, However in this system The motion is along the direction of the springs (longitudinal).

We can take the continuum limit to get The Classical wave Equation. First, lets put the (k 's) back in the equation; and let's use ξ (ki) to represent displacement (instead of x):

$$
m \frac{d^{2} \xi(x)}{d t^{2}}=k[(\xi(x+\Delta x)-\xi(x))-(\xi(x)-\xi(x-\Delta x))]
$$

Divide by Δx on both sidles:

$$
\frac{m}{\Delta x} \frac{d^{2} \xi(x)}{d t^{2}}=k\left[\frac{(\xi(x+\Delta x)-\varepsilon(x))}{\Delta x}-\frac{(\xi(x)-\varepsilon(x-\Delta x)}{\Delta x}\right.
$$

Multiply a divide by Δx again on RHS:

$$
\begin{aligned}
& \underbrace{m x}_{\uparrow} \frac{d^{2} \xi(x)}{d t^{2}}=(k \Delta x)\left[\frac{\frac{(\xi(x+\Delta x)-q(x))}{\Delta x}-\frac{(\varepsilon(x)-\xi(x-\Delta x))}{\Delta x}}{\Delta x}\right] \\
& \rho=\frac{\text { mass }}{\substack{\text { density }}}
\end{aligned}
$$

In the limit where $\Delta x \rightarrow \phi$, the RHS become the $z^{\text {nd }}$ spatial derivative: $\frac{d^{2} \xi(x)}{d x^{2}}$

The constant ($k \Delta x$) is a property of the material called the "elastic modulus" or sometimes "Young's Modulus". It has units of

$$
k \Delta x=\frac{N}{m} \cdot m=\text { Newton }=\text { Force. }
$$

We un the symbol $E \equiv K \Delta x=e l a s t i c$ modulus.

So the wave equation for longitudinal oscillations in the continuum limit appear as (usia partial derivatives now)

$$
\frac{\partial^{2} \xi(x, t)}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} \xi(x, t)}{\partial x^{2}}
$$

And the phase velocity is

$$
\begin{aligned}
& \text { is } \left.\frac{\partial^{2} \xi(x, t)}{\partial x^{2}}=\frac{\rho}{E} \frac{\partial^{2} \xi(x, t)}{\partial t^{2}}\right] \\
& v_{p}=\sqrt{\frac{E}{\rho}}
\end{aligned}
$$

If ow r material is a 3-dimensional Rectangular block, then we should let the density ρ be the mass per unit volume, rather them mass per unit distenus $\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right.$ instead of $\left.\frac{\mathrm{kg}}{\mathrm{m}_{3}}\right)$. Then the units of E should be $\left(\frac{N}{M^{2}}\right)$ rather Than simply (N).

$$
E=E l a s t i c \text { Modulus }=\frac{N}{m^{2}} \text { in } 3 \text { dimensores. }
$$

For steel, $E=2 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ and $\rho=7.75 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, so the speed of sound is $V_{S}=V_{F}=\frac{E}{\rho}=5 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}$

