
PHYS 272 (Spring 2019):
Introductory Physics: Fields

Homeworks

Note: the 1st homework is simply signing the honor pledge (but
still it is compulsory); the actual homework starts with #2.

And, please sign the honor pledge on a separate sheet of paper
from HW 2.

1 Homework 1 (due Friday, February 8 in folder out-

side Room 3118 of PSC by 5 pm.)

Print your name and sign (with date) the Honor Pledge (which covers all assignments,
including exams):

“I pledge on my honor that I will not give or receive any unauthorized assis-
tance (including from other persons and online sources) on all examinations and
homework assignments in this course.”

General guidelines for homework

(1). Please read the problem and chapter number (when it is from the textbook by Giancoli,
henceforth simply referred to as “Giancoli”) correctly.

(2). Many of the following homework problems have multiple parts. So, it is your responsi-
bility to read the full statement of the problem carefully.

(3). Most (if not all) of the problems here are not purely mathematical ones, i.e., are
instead (mostly) physics-based. So, unless it is (explicitly) stated otherwise, feel free to
use any computer programs (such as mathematica) for solving the mathematical parts (for
example, doing complicated integrals) or to look up mathematical formulae in reference
tables (including online). However, if you take such a step, please indicate what exactly you
did here (this will help us grade appropriately).

(4). You are welcome to ask for help (for example, hints) on homework from the instructor or
TA. Also, “limited” discussion with other students is allowed (and encouraged): for example,
just in order to get started, but the actual problem-solving part should be your own work.
And, you should try not to get any other outside help.

(5). In order to get full credit for homework (and exam) problems, you should show as many
steps as you can.

1



2 Homework 2 (due Friday, February 8 outside Room

3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli.

2.1 Coulomb’s law

Problem 13 from chapter 21.

2.2 Electric field due to discrete charges (I)

Problem 33 from chapter 21.

2.3 Electric field due to discrete charges (II)

Problem 36 from chapter 21.

2.4 Electric field due to continuous charge distribution (I): no
integration required

Problem 40 from chapter 21.

You can simply use (i.e., without any need to re-derive it) the result from Example 21-9 of
Giancoli, although you are advised to go through that example carefully (just for your own
learning).

2.5 Electric field due to continuous charge distribution (II): no
integration required

Problem 47 from chapter 21.

Note that problem #46, whose result is to be used here for computing the electric field due
to each side of the square loop, was actually done during lecture. Also, remember to add the
electric fields due to the four sides vectorially: you might wish to make use of the symmetry
of the configuration. Finally, check your answer in the limiting case of z � l.

2.6 Electric field and acceleration due to continuous charge dis-
tribution (III): integration required

This problem is for Honors section only.

Problem 50 from chapter 21.
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3 Homework 3 (due Monday, February 18 in folder

outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first one from chapter 21, rest from chapter
22.

3.1 Electric field due to charged arc of circle: integration required

Problem 49 from chapter 21.

Note: Recall a general “strategy” for computing E due to a continuous charge distribution
(of course each problem might have its own special features/subtleties):

(1). Draw a picture displaying division of the charge distribution into small (infinitesimal)
elements, labelled by a suitable coordinate (for example, y going along line of charge that we
worked out in lecture/example 21-11 of Giancoli). Also, show the direction of electric field
(dE) due to this small piece (as usual, directed away/toward the positive/negative charge):
note that this could depend on location of the elemental charge.

(2). Compute the magnitude of dE using the usual formula (i.e., for a point charge): again,
this might vary with the element in consideration.

(3). Sum (integrate) – vectorially (i.e., keeping track of direction) – the various dE’s: try to
use “symmetry” to spot cancellation between dE’s from some elements.

(4). Try to check that in a suitable limit (for example, field point is very far away), your exact
answer above (using a possibly long calculation!) agrees with the (approximate) expectation
based on a (much) simpler argument which is valid in this case.

3.2 Computing electric flux given field

Problem 3 from chapter 22.

3.3 Flux using Gauss’s law

Problem 7 from chapter 22.

3.4 Gauss’s law for (thin) spherical shells

Problem 27 from chapter 22.

(You can study examples 22-3 through 22-5 from Giancoli for how to apply Gauss’s law to
a spherical distribution of charge: we will also do an example during Wednesday session.)

Note: Recall a general “strategy” for computing E using Gauss’s law:

(1). choose the Gaussian surface appropriately, i.e., (a). needless to say, it should pass
through the point P where we want E so that Left-hand side (LHS) of Gauss’s law (electric
flux) will contain the desired E and (b). conform to the “symmetry/geometry” of the charge
configuration (hence the direction of the electric field itself); for example, for a long (straight)
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line of charge or a charged cylinder (whether solid or shell), where we expect the electric
field to be directed radially outward/inward from the axis, the Gaussian surface should be
a cylinder.

(2). LHS of Gauss’s law then typically (but one should nonetheless check it!) reduces to
simply ∼ (desired) E (which is due to all changes, whether inside or outside) × (appropriate)
area if the electric field is along the direction of the normal to the some part the closed
surface. On the other hand, on other parts of the closed surface, the electric field might
be perpendicular to the normal (or tangential to the surface), in which case the relevant
contribution to the flux vanishes.

(3). RHS, i.e., charge enclosed, can more subtle: again, only charge inside the above Gaussian
surface counts, whether it is a discrete/point charge or (part of) a continuous charge distri-
bution; in latter case, it might schematically looks like ∼ (appropriate) length/area/volume
× right type of charge density (and if charge density is not a constant, then one has to start
with infinitesimal version of length/area/volume, then integrate as usual).

3.5 Gauss’s law for (thin) cylindrical shells

Problem 35 from chapter 22.

Hint: for part (d), you will have to recall the “ingredients” of uniform circular motion from
your previous classes!

3.6 Flux via Gauss’s law, requiring integration

This problem is for Honors section only.

Problem 50 from chapter 22.

Note: after some careful thought, you might wish to take the area element on the end cap
of the cylinder to be an (infinitesimally) thin ring so that we are left with a one-dimensional
integral, just like in example 21-12 of Giancoli (or in computing area of a circle by integration
that we did in class).

4 Homework 4 (due Thursday, February 28 during lec-

ture or in folder outside Room 3118 of PSC by 5

pm.)

The first problem in this homework is from chapter 22 of Giancoli and the second from
chapter 23.

4.1 Gauss’s law for sphere with cavity or a thick spherical shell

Problem 29 from chapter 22.
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Note: while computing electric field for points inside the thick spherical shell, be especially
careful with the amount of change enclosed by the corresponding Gaussian surface. (For a
cylindrical version of this problem, see #9 from Wednesday session.)

4.2 Basics of work and energy (electric potential and kinetic)

Problem 4 from chapter 23.

4.3 Potential from electric field

Consider a straight thin rod of length l carrying a uniformly distributed total charge of
Q. We already computed the electric field directly from this charge distribution at a point
along the perpendicular to the midpoint of the rod: see notes from lecture or problem 46 of
chapter 21 (referring to Fig. 21-29). Using this electric field, compute the potential at the
same point. Assume that the potential vanishes infinitely far away from this rod.

4.4 Potential (directly) from charge distribution

For the same situation as above, compute the potential directly from the charge distribution,
i.e., without “going through” the electric field (cf. above). Compare your result with what
you obtained above.

4.5 Electric field from potential

Finally, continuing with the same situation, given the potential that you computed in HW 4.4
just above (i.e., directly from charge distribution), determine the component of the electric
field along the direction perpendicular to the rod (at the same point): here, you are supposed
to “forget” HW 4.3 above. Compare this to the result of problem 46 of chapter 21 (which
was also derived in lecture).

Note: was this “two-step” approach (HW 4.4 and 4.5, i.e., “do not consider” HW 4.3 here)
for calculating electric field (i.e., via potential) easier than the direct method for getting
electric field that was used in problem 46 of chapter 21 (again, also in lecture)?

Note: in lecture, we followed a procedure similar to the above three “steps” for the case of
the field point being along the axis of the rod.

4.6 Potential from a non-uniform charge distribution

This problem is for Honors section only.

Problem 41 from chapter 23.

5



5 Homework 5 (due Tuesday, March 12 during lecture

or outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first one from chapter 23, rest from chapter
24.

5.1 Electrostatic potential energy of a charge distribution (re-
quires integration)

Problem 62 of chapter 23.

Hint: The idea here is to generalize (as follows) the procedure discussed in section 23-8 for
point changes (also done in lecture) to the present case of continuous charge distribution (and
a similar approach is used in section 24-4 and lecture for computing the energy stored in a
capacitor). Namely, one can build-up the total charge Q on the spherical surface bit-by-bit,
i.e., suppose the charge on the spherical surface is q (< Q) – uniformly distributed – at
some “intermediate” stage of such a process. What is the (small) work done in bringing in
a (small) additional charge dq (again to be uniformly spread on the spherical surface)? In
case you need it, the potential for a spherical surface charge distribution is given in example
23-4 of Ginacoli. As usual, integrate to get the total charge Q, thus the final work done.

5.2 Basics of capacitance (including energy stored)

Problem 48 of chapter 24.

Hints: First determine the initial charge on the 2.20-µF capacitor; then use the fact that
while charge can be re-distributed, the total charge is conserved (and that the potential
difference between two points is independent of path along which we evaluate it, with con-
necting/conducting wires being equipotentials, i.e., there is no potential “drop” across them).

Note: This problem is similar to # 14 from Wednesday problem solving session, example
24-7 of Giancoli and problem 24-6 of Ginacoli, which was done in lecture.

5.3 Calculation of Capacitance

Problem 18 of chapter 24.

Hint: Recall the general strategy for computing capacitance for a configuration of two
oppositely charged objects (“plates”), i.e., determine the electric field for this charge distri-
bution; then the resulting potential difference between the two plates and use the definition
of capacitance.

Hint: If needed, see examples 24-1 through 24-4 of Giancoli (the first two were done also in
lecture).

Note: As discussed during lecture, charges in the (net) neutral piece of metal (here, the
sheet) will re-arrange themselves (i.e., get separated) so that the induced field due to these
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(surface-only) charges (exactly) cancels that due to the external charges (here, on the capac-
itor plates) inside the metal: in this specific case, i.e., (infinite) parallel plates, (if needed)
you should be able to figure out what this induced charge distribution on the surfaces of
metal sheet looks like.

5.4 Capacitors in Series and Parallel

Problem 29 of chapter 24.

Note: part (a) of such problems (see also # 16 of Wednesday problem-solving session or
the one done in lecture, which was based on example 24-5 of Giancoli) ask for equivalent
capacitance of a large network, which is to be obtained by multiple uses of the series and
parallel formulae for a pair of capacitors.

Part (b) then is about charge/voltage for each capacitor of the original network; for obtaining
this, one typically has to “work backward” through the analysis done for part (a): see
lecture/Wednesday session notes or example 24-6 from Giancoli.

5.5 Electric Energy Stored: various approaches, some requiring
integration

Problem 51 of chapter 24.

Note: part (c) here is essentially same as HW 5.1 above.

Hint: Since it is a conducting sphere, where exactly does the charge Q redside?

5.6 Electric field inside a cylindrical capacitor

This problem is for Honors section only.

Problem 20 of chapter 24.

6 Homework 6 (due Thursday March 28 during lecture

or in folder outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first one (and extra one for Honors section
only) is from chapter 24, rest are from chapter 25.

6.1 Capacitance with dielectric

Problem 61 of chapter 24.

Hint: Can you consider this capacitor as two capacitors in series or in parallel?
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6.2 Microscopic view of electric current

Problem 58 of chapter 25.

6.3 Computing resistance

Problem 22 of chapter 25.

6.4 Basics of electric current, resistance and voltage: Ohm’s law

Problem 8 of chapter 25.

6.5 Power changing with voltage

Problem 38 of chapter 25.

6.6 Using energy/work considerations to compute force

This problem is for Honors section only.

Problem 63 of chapter 24.

Note: the force being referred to in part (c) is that of attraction between the induced change
on the dielectric and the charges on the plates: see Fig. 24-17 (c) and (d) from Giancoli. In
order to compute this force, you can imagine trying to pull out the dielectric slab (against
the above force), then use the ideas of conservation of energy/work done in this process
etc.: you might find examples 24-11 and 24-12 and problem 50 of chapter 24 (solved during
lecture) relevant here.

7 Homework 7 (due Thursday, April 4 during lecture

or in folder outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first one is from chapter 25, rest are from
chapter 26.

7.1 Computing resistance by integrating

Problem 30 of chapter 25.

Hint [for part (a)]: as suggested in the problem, you can divide the resistor into concentric
(infinitesimally) thin cylindrical shells; compute the (small) resistance of each such shell: can
the current density/electric field be assumed to be (approximately) constant over its small
“length” along the direction of current and (using the symmetry of the configuration) over
its cylindrical surface so that you can use the usual resistance formula for a wire? Then,
“add-up/integrate” these (small) resistances suitably.
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Hint [for part (a)]: Alternately, (and equivalently), think about whether the current den-
sity/electric field (the two quantities being related by Eq. 25-17) inside this resistor will be
uniform along the direction of the current (i.e., independent of the radial distance r from
axis of the cylinder). Given the symmetry of the configuration, will the magnitude of current
density/electric field have any “angular” dependence? And, based on charge not accumu-
lating/leaking anywhere, does the total current crossing a cylindrical surface of radius r (as
given by Eq. 25-12) depend on r? Use all these points in order to figure out how the current
density (thus electric field) will depend on r; then compute the potential difference using
this electric field.

7.2 Battery with internal resistance

Problem 4 of chapter 26

7.3 Series and parallel combinations of resistances

Problem 18 of chapter 26

Note: 1st part of such problems (see also # 25, 26, of Wednesday problem-solving session
or the one done in lecture, which was based on examples 26-4, 26-5 of Giancoli) ask for
equivalent resistance of a large network, which is to be obtained by multiple uses of the
series and parallel formulae for a pair of resistors.

2nd part then is about current through/voltage across for each resistor of the original net-
work; for obtaining this, one typically has to “work backward” through the analysis done
for 1st part: see lecture/above Wednesday session problems or examples from Giancoli.

7.4 Kirchhoff’s rules: single battery

Problem 30 of chapter 26

Recall a general “recipe/strategy” for solving for currents etc. in a circuit using Kirchhoff’s
rules:

(1). Label the current in each separate branch of the circuit [i.e., in-between two junctions
(where connecting wires meet)], choosing a direction for it: typically, these are the unknowns
in the problem.

(2). Apply Kirchhoff’s junction/current rule at one or more junctions of the circuit, i.e., sum
of currents entering is equal to sum leaving.

(3). Apply Kirchhoff’s voltage/loop rule to one or more loops of the circuit (again, choose a
direction for going around each loop): sum of voltages (with appropriate signs) across each
component around the loop is zero. In particular,

(a). For a resistor with resistance R and current I flowing through it, the voltage is taken
to be −RI if the chosen direction of loop [from step (2) above] is same as that (assumed) of
the current [from step (1) above] (and +RI if the two directions are opposite).

(b). For a battery, the (usually given) voltage is taken with a positive sign if the chosen
direction of the loop is from negative to positive terminal, whereas it is negative if the
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direction of the loop is the opposite.

(4). Check that there are as many equations as unknowns: again, voltages across resistances
can be written in terms of currents, so do not count as further unknowns. If you are “short”
of equations, then you need to apply Kirchhoff’s rules to additional junctions or loops.

(5). Solve algebraically (the linear, inhomogeneous system of equations) for the unknown
(currents): if value of a current turns out to be negative, then it just implies that the actual
direction is opposite to what was assumed to start with. You can check the answers by using
any “extra” loop or junction rule equations.

7.5 Kirchhoff’s rules: two batteries with internal resistances

Problem 42 of chapter 26

7.6 Combinations of resistors, but not quite series or parallel!

This problem is for Honors section only.

Problem 41 of chapter 26

8 Homework 8 (due Thursday, April 11 during lecture

or in folder outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first one is from chapter 25, next two are
from chapter 26 and last two are from chapter 27.

8.1 Alternating current: average vs. maximum power

Problem 55 of chapter 25.

8.2 RC circuit

Problem 49 of chapter 26.

8.3 Ammeter and voltmeter reading

Problem 61 of chapter 26.

8.4 Hall effect

Problem 48 of chapter 27.

Hint: you can study Example 27-13 from Giancoli. And, for the last part, you might have
to re-visit what you learnt in previous chapter(s).
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8.5 Force on charge moving in Magnetic field

Problem 28 of chapter 27.

8.6 Magnetic moment of current distribution

This problem is for Honors section only.

Problem 40 of chapter 27.

9 Homework 9 (due Thursday, April 18 during lecture

or in folder outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first two are from chapter 27, while rest
are from chapter 28.

9.1 Force on electric current in Magnetic field

Problem 9 of chapter 27.

Hints: as usual, use symmetry of the configuration in order to spot possible cancellations.
Also, you might find Example 27-3 from Giancoli (also done in lecture) useful here.

Note: In fact, you can use the following general “strategy” for computing the magnetic
force on a current-carrying wire of arbitrary shape (of course each problem might have its
own special features/subtleties):

(1). Draw a picture displaying division of the current-carrying wire into small (infinitesimal)
elements, labelled by a suitable coordinate (for example, angle φ going along the semi-circular
wire that we worked out in lecture/example 27-3 of Giancoli). Also, show the direction of
magnetic force (Fmag) on this small piece, i.e., along dl×B: note that this could depend on
location of the elemental current.

(2). Compute the magnitude of dFmag using |Idl × B|: again, this might vary with the
element in consideration.

(3). Try to use “symmetry” of the current in order to spot cancellation between dFmag’s
from some elements.

(4). Sum (integrate) – vectorially (i.e., keeping track of direction) – the various dFmag’s,
keeping in mind the symmetry considerations of the step just above.

(5). Try to check that in a suitable limit (for example, θ0 → 0 in HW 9.1, i.e., problem 9 of
chapter 27 of Giancoli ), your exact answer above (using a possibly long calculation!) agrees
with the (approximate) expectation based on a (much) simpler argument which is valid in
this case.

9.2 Torque on a current loop

Problem 37 of chapter 27.
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9.3 Biot-Savart Law

Problem 37 of chapter 28

Hint: you might find it useful to study the generalized version of Example 28-11 from Gi-
ancoli (which was done in class: see note posted at
https://www.physics.umd.edu/courses/Phys272/agashe-spring19/notes/B straight wire.pdf)
and Example 28-13.

Note: In fact, you can use the following general “strategy” for computing magnetic field
due to a current-carrying wire of arbitrary shape (of course each problem might have its own
special features/subtleties):

(1). Draw a picture displaying division of the wire into small (infinitesimal) elements, labelled
by a suitable coordinate, for example, y going along the finite straight wire that we worked
out in lecture (see note posted also). Also, show the direction of magnetic field (dB) due
to this small piece, using Biot-Savart law, i.e., along dl× r: note that this could depend on
location of the elemental current.

(2). Compute the magnitude of dB using the Biot-Savart law, i.e., µ0/(4π)|dl×r|/r3: again,
this might vary with the element in consideration.

(3). Try to use “symmetry” of the current in order to spot cancellation between dB’s from
some elements.

(4). Sum (integrate) – vectorially (i.e., keeping track of direction) – the various dB’s, taking
into account symmetry considerations in step just above.

(5). Try to check that in a suitable limit (for example, the length of the straight wire
being “infinite”), your exact answer above (using a possibly long calculation!) agrees with
the (approximate) expectation based on a (much) simpler formula/argument (for example,
using Ampere’s law) which is valid in this case.

9.4 Biot-Savart law, but requiring integration

Problem 39 of chapter

Hint: As usual, you can divide-up the disc into infinitesimal rings of charge, each of which
is rotating and so constitutes a current, and then simply use result of Example 28-12 (also
done in lecture), adding-up the small contributions to the magnetic field and the magnetic
dipole moment from the various rings.

Note: in part (c), you will have to do an appropriate Taylor series expansion for R/x� 1.

9.5 Force between straight wires due to their magnetic fields, not
requiring integration (once “symmetry” is used)

Problem 18 of chapter 28.

Hint: first get the magnetic field due to the long wire at the location of rectangular current
loop. Then, use this field for computing the force on each part of the loop.
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Hint: as usual, be careful with directions of forces on various parts of the rectangular loop
of current, watching out for possible cancellations.

9.6 Magnetic field due to current-carrying strip, requiring inte-
gration

This problem is for Honors section only.

Problem 23 of chapter 28.

10 Homework 10 (due Thursday, May 2 during lecture

or in folder outside Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first two (and last one for Honors section)
are from chapter 28, rest are from chapter 29.

10.1 Ampere’s law: cylindrical geometry

Problem 31 of chapter 28.

Hint: you might find it useful to study Example 28-6 (also done in lecture) and Example
28-7 (also done in lecture) or its variation: problem # 35 from Wednesday session.

Note: Recall a general “strategy” for computing the magnetic field (B) using Ampere’s law
(also given at bottom of page 740 of Giancoli):

(1). Based on the symmetry of the current configuration, make an “educated guess” for the
direction of B; for example, for an “axial” current (whether along a long, straight wire or a
long, thin cylindrical shell), we expect B to be “circumferential”, i.e., B lines form concentric
circles, with magnitude of B being the same on each such circle.

You can simply assume one “sign” of B, for example, say, clockwise in above situation: if
(in the end) the (magnitude of) B that you compute turns out to be negative, then B is
actually counter-clockwise.

(2). Choose the Amperian loop [i.e., closed path, along which (line) integral of B on the
Left-hand side (LHS) of Ampere’s law is computed] appropriately, i.e., (a). needless to say,
it should pass through the point P where we want B so that the LHS of Ampere’s law
will contain the desired B and (b). conform to the “symmetry/geometry” of the charge
configuration etc.; for example, for an axial current mentioned above, the Amperian loop
should be a concentric circle.

Also, (c). it is “convenient” to choose the direction of going around the Amperian loop to
be the “same” as that of the assumed B. Just to be clear, it is also Ok to make the opposite
choice of going around the loop: in this way, there might be an “extra” negative sign in the
step below (computing LHS of Ampere’s law), of course giving the same final answer (once
you are careful in step 4 below about sign of the enclosed current).
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(3). LHS of Ampere’s law then typically (but one should nonetheless check it!) reduces to
simply ∼ (desired) B (which is due to all currents, whether inside or outside) × length of
appropriate part of the Amperian loop, i.e., there could be other pieces of the Amperian
loop which do not give any contribution due to either B vanishing or B ⊥ tangent to the
path.

(4). RHS, i.e., current enclosed, can be more subtle: again, only current piercing/threading
through the surface whose boundary is the Amperian loop on LHS counts, whether it is a
discrete/line current or (part of) a continuous current distribution; in the latter case, the
enclosed current schematically looks like ∼ area× current density (i.e., current per unit area)
and if current density is not a constant, then one has to start with infinitesimal version of
area, then integrate as usual.

Be careful with the sign of each part of the (enclosed) current, i.e., follow the right-hand
rule: if the fingers of your right hand indicate the direction of integration around the closed
path, then your thumb defines the direction of positive current.

10.2 Ampere’s law: solenoid

Problem 29 of chapter 28.

10.3 Lenz’s law

Problem 8 of chapter 29.

Hint: you can use the general strategy given below for using Lenz’s law in order to figure
out the direction of the induced current, which is also outlined at the top of page 763 of
Giancoli (and it was also done in lecture): Example 29-4 from Giancoli or problem # 37
from Wednesday session will also be useful here.

(1). Figure out whether the magnetic flux (due to another current or a permanent magnet)
inside the loop is decreasing, or increasing, or unchanged.

(2). The magnetic field due to the induced current: (a). points in the same direction as the
external field if the inducing flux is decreasing; (b). points in the opposite direction from the
external field if the flux is increasing; or (c). is zero if the flux is not changing.

(3). Knowing the direction of the magnetic field due to the induced current, use the right-
hand rule to determine the direction of the induced current.

10.4 Faraday’s law

Problem 23 of chapter 29

10.5 Motional EMF

Problem 31 of chapter 29.

Hint: you might take a look at Examples 29-5 and 29-8 (versions of which were also done
in lecture) and problem # 39 from Wednesday session; in particular, in this problem, what
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force “replaces” the one applied by “us” in the other cases?

10.6 Ampere’s law: cylindrical geometry, but requiring integra-
tion

This problem is for Honors section only.

Problem 32 of chapter 28

Hint: as usual, divide each conductor into infinitesimal concentric cylindrical shells (over
which current density is constant), get the (infinitesimal) current in each such shell and then
integrate to compute the current enclosed by an Amperian loop.

11 Homework 11 (due Friday, May 10 in folder outside

Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first two (and last one for Honors section)
are from chapter 29, rest are from chapter 30.

11.1 Faraday’s law, but requires integration, and Lenz’s law

Problem 25 of chapter 29.

Hint [for part (a)]: is the magnetic field due to the current I uniform over the square loop?
If not, then you will have to divide-up the square (as shown in the figure) into (appropriate)
infinitesimal elements (such that magnetic field over each is a constant), compute the flux
through each element and then integrate.

Hint [for part (b)]: the flux through the square loop that you computed in part (a) above
should depend on the distance of the square loop (b) from the straight wire. If the loop is
pulled away from the wire, is this distance (hence flux) changing?

Hint [for part (d)]: this computation is similar to the “motional EMF” problems: see
Examples 29-5 and 29-8 (versions of which were also done in lecture), HW 10.5 (Problem 31
of chapter 29 of Giancoli) and problem # 39 from Wednesday session.

Note [for part (d)]: assume that the resistance of the square loop is R.

11.2 Changing magnetic field produces electric field

Problem 54 of chapter 29

Hint: you might find Example 29-14 from Giancoli (also done in lecture) and part (a) of
problem 40 from Wednesday session useful here.
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11.3 Mutual inductance

Problem 3 of chapter 30.

Hint: you might find problem 41 from Wednesday session (in turn, based on # 30-2 of
Giancoli) useful here. Also, compare this result to that of Example 30-1 of Giancoli (also
done in lecture).

11.4 Self-inductance

Problem 12 of chapter 30

Hint: you might find Example 30-3 from Giancoli (also done in lecture) useful here.

11.5 Energy stored in magnetic field (requires integration)

Problem 20 of chapter 30

Hint: first compute the magnetic field in the space between the two conductors. If this
magnetic field is not uniform, then you will have to divide-up this region into infinitesimal
cylindrical shells (such that magnetic field is (approximately) a constant over each such
shell), compute the infinitesimal energy stored in the magnetic field in each shell and then
integrate. (A similar approach is to be used for problem 42 of Wednesday session.) You can
of course use the solution to Example 30-5 from Giancoli here.

A cross-check: does your result above (for the energy stored in the magnetic field) agree
with that obtained by simply plugging-in the self-inductance computed in Example 30-5 into
the formula U = 1

2
LI2?

11.6 Motional EMF, but with also another source of EMF

This problem is for Honors section only.

Problem 34 of chapter 29

12 Homework 12 (due Friday, May 17 in folder outside

Room 3118 of PSC by 5 pm.)

All problems in this homework are from Giancoli: first two are from chapter 30, rest are
from chapter 31.

12.1 LR circuit

Problem 26 of chapter 30

Hint: this is a generalization of the simple LR circuit (i.e., with one resistance and one
loop/current) discussed in section 30-4 of Giancoli (also done in lecture): we have three
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currents to solve for, but (as usual) we can use Kirchhoff’s rules (junction and loop) to relate
them.

Note: in the steady state, i.e., “after a long time”, what is the rate of change of current?
Is there any potential difference (induced/back-emf) in the inductor in this situation (even
if current through it is non-zero)?

12.2 LC circuits and oscillations

Problem 35 of chapter 30.

The discussion in section 30-5 of Giancoli (also done in lecture) should be useful here.

12.3 Magnetic field produced by changing electric field (I)

Problem 4 of chapter 31.

Hint: you might find Example 31-1 of Giancoli (also done in lecture) useful here.

12.4 Plane EM waves

Problem 11 of chapter 31

Hint: compare above situation to Eq. 31-7 of Giancoli (which is a plane wave traveling in
the x-direction).

12.5 EM wave energy/Poynting vector

Problem 23 of chapter 31.

(This problem is another version of problem 46, i.e., # 31-30 of Giancoli, from Wednesday
session and Example 31-6 of Giancoli.)

12.6 Magnetic field produced by changing electric field (II)

This problem is for Honors section only.

Problem 7 of chapter 31.
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