A small positive point charge is placed at point *P* in the electric field shown below. Which way should the charge be moved if no work is to be done on it as it moves?



- 1. Along the 1-V equipotential.
- 2. Perpendicular to the equipotential lines
- 3. You can St avoid doing work, unless you move the charge along the 0 V equipotential line

ConcepTest Database; No. 1

Consider an arbitrarily shaped charged conductor (a). If we double the charge on the conductor (b), which of the following also doubles?



- 1. The electric field at point *P*
- 2. The potential at point P
- 3. Both of the above
- 4. Neither of the above

A positively charged rod is held near a neutral conducting sphere as illustrated below. A positively charged particle is moved from point A to point B. The electrostatic work done on the positively charged particle during the motion



- 1. positive
- 2. zero
- 3. negative
- 4. depends on the path taken from Ato B
- 5. depends on the particles change in kinetic energy
- 6. cannot be determined without knowing more about the polarization induced in the sphere

ConcepTest Database; No. 4 CTID 3786

A positively charged rod is held near a neutral conducting sphere as illustrated below. A negatively charged particle is moved from point A to point B at constant speed. The mechanical work required to cause this motion is



- 1. positive
- 2. zero
- 3. negative
- 4. depends on the path taken from A to B
- 5. cannot be determined without knowing more about the polarization induced in the sphere

ConcepTest Database; No. 5

Two test charges are brought separately into the vicinity of a charge +Q. First, test charge +q is brought to point A a distance r from +Q. Next, +q is removed and a test charge +2q is brought to point B a distance 2r from +Q. Compared with the electrostatic potential of the charge at A, that of the charge at B is



- 1. greater.
- 2. smaller.
- 3. the same.

ConcepTest Database; No. 1

Two test charges are brought separately into the vicinity of a charge +Q. First, test charge +q is brought to a point a distance r from +Q. Then this charge is removed and test charge -q is brought to the same point. The electrostatic potential energy of which test charge is greater:



- 1. +q
- 2. *-q*
- 3. It is the same for both.

An electron is pushed into an electric field where it acquires a 1-V electrical potential. Suppose instead that two electrons are pushed the same distance into the same electric field. The electrical potential of the two electrons is

- 1. 0.25 V.
- 2. 0.5 V.
- 3. 1 V.
- 4. 2 V.
- 5. 4 V.

ConcepTest Database; No. 3 CTID 3899

Consider two isolated spherical conductors each having net charge Q. The spheres have radii a and b, where b > a. Which sphere has the higher potential?

- 1. the sphere of radius a
- 2. the sphere of radius *b*
- 3. They have the same potential.

ConcepTest Database; No. 4 CTID 3901

Two parallel conducting plates have charges +Q and -Q:



We measure the electric potential of plate A with respect to plate B. We find that

- A) Case 1 has a higher electric potential.
- B) Case 2 has a higher electric potential.
- C) The electric potential is the same in the two cases.