Solution to Quiz 96

$$
E=\frac{1}{2} m u^{2}-\frac{e^{2}}{4 \pi \epsilon_{o r}}
$$

From force balance

$$
\begin{align*}
& \frac{m v^{2}}{r}=\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}} \\
& \Rightarrow m v^{2}=\frac{e^{2}}{4 \pi \epsilon_{0} r} \tag{2}
\end{align*}
$$

Use (2) in (1) to get

$$
E=\frac{e^{2}}{8 \pi \epsilon_{o r}}-\frac{e^{2}}{4 \pi \epsilon_{o r}}=\frac{-e^{2}}{8 \pi \epsilon_{o r}}
$$

\Rightarrow Energy required to $10 n i z e$

$$
\begin{aligned}
& =\frac{e^{2}}{8 \pi \epsilon_{0} r}=5 e V \\
\Rightarrow r & =\frac{e^{2}}{8 \pi \epsilon_{0} \times E_{\text {ionization }}}=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{8 \times \pi \times 8.85 \times 10^{-12} \times 5 \times 1.6 \times 10^{-19}} \\
& =1.43 \times 10^{-10} \mathrm{~m}=1.43 \AA
\end{aligned}
$$

Now, using (2);

$$
\begin{aligned}
& m u^{2}=\frac{e^{2}}{4 \pi \epsilon_{o r}}=2 \times \frac{e^{2}}{8 \pi t_{o r}}=2 \times 5=10 \mathrm{cV} \\
& \Rightarrow u=\sqrt{\frac{10 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}}=1.325 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

