$0.95 \mathrm{c} \quad 0.95 \mathrm{c}$
Initially: $-\cdots \rightarrow \cdots$

We are given that the two photons are identical, so, both have the same wavelength, λ
From Energy conservation, before and after collision,

$$
\begin{equation*}
r_{e} m_{e} c^{2}+r_{p} m_{p} c^{2}=\frac{h c}{\lambda}+\frac{h c}{\lambda} \tag{1}
\end{equation*}
$$

where,

$$
\left.\begin{array}{l}
e: \text { electron } \\
p: \text { proton }
\end{array}\right\} \Rightarrow m_{e}=m_{p}\left[\begin{array}{l}
\text { They are partic } \tag{2}\\
\text { - anti-particle } \\
\text { and have the } \\
\text { same mass. }
\end{array}\right] \quad \text { also, } v_{e}=v_{p} \quad(\text { velocities })=0.95 c .
$$

Hence (1) \& (2) give

$$
\begin{aligned}
& \not 2 \frac{h c}{\lambda}=\not 2 \gamma_{e} m_{e} c^{2} \quad\left[\begin{array}{l}
V_{\operatorname{sing}} \\
m_{e}=m_{p} \\
v_{e}=v_{p} \\
r_{e}=\gamma_{p}
\end{array}\right] \\
& \Rightarrow \lambda=\frac{h c}{r_{e} m_{e} c^{2}}=\frac{h}{\gamma_{e} m_{e} c}=0.75 \mathrm{pm}
\end{aligned}
$$

