Solution to Quiz 7-d
section 0103
(a) The two events are

1: the astronaut starting from earth
2: the astronaut returning to earth
The proper time will be measured in a frame which is at rest with respect to the moving rocket; hence it has to be the astronaut.
In other words, the two events, 182 will be measured by the same clock in the astronaut's inertial frame
(b) $\Delta \tau=\sqrt{1-\beta^{2}} \Delta t$
$\Delta \tau=\frac{10}{2}$ years (half of time taken; to go from)

$$
\begin{aligned}
& \Delta t=\frac{20}{2}=10 \text { years } \\
& \Rightarrow 5=10 \sqrt{1-\beta^{2}} \Rightarrow \sqrt{1-\beta^{2}}=\frac{5}{10}=\frac{1}{2} \\
& \Rightarrow 1-\beta^{2}=\frac{1}{4} \Rightarrow \beta^{2}=1-\frac{1}{4}=\frac{3}{4} \Rightarrow \beta=\sqrt{3} / 2 \\
& \Rightarrow v / c \equiv \beta=\sqrt{3} / 2=0.866 \Rightarrow v=0.866 \mathrm{c}
\end{aligned}
$$

(c) The distance would be

$$
\Delta x=v \cdot \Delta t
$$

Note that every term in the above eq is w.r.t.
the Earth frame
Δx : Dist. b/w Earth \& Star, as measured in Earth frame
v: velocity of rocket, measured in Earth frame
Δt : time elapsed in Earth frame

$$
\begin{aligned}
\Rightarrow \Delta x & =0.866 c \times \frac{20}{2} \text { years } \quad\left[\begin{array}{l}
20 \text { years were taking } \\
\text { Jor the round journey } \\
\text { Which traversed Earth } \\
\text { to star twice }
\end{array}\right] \\
& =8.66 \text { light-years }
\end{aligned} \quad\left[\begin{array}{l}
\Delta x
\end{array}\right]
$$

TA solution Page 2

