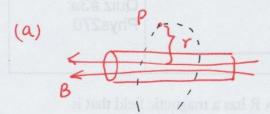

NAME:	Quiz #3a: Phys270

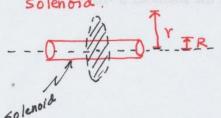
- 1. [10 pts] An infinitely long solenoid of radius R has a magnetic field that is changing at the rate of dB/dt. Suppose the magnetic field is increasing in the direction depicted below (imagine that the depicted solenoid is infinitely long!).
 - a. [2 pts]Draw the induced electric field direction at point P.
 - b. [4 pts] Derive an expression for the magnitude of the electric field outside the solenoid a distance r from the axis of the solenoid (r>R).


c. [4 pts] Derive an expression for the magnitude of the electric field inside the solenoid a distance r from the axis of the solenoid (r<R).

PHYS 270: Quiz 3: Solution.

Dated 09/23/09

Solution

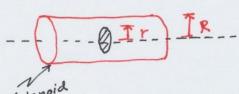


Consider a loop of radius r, concentric to the solenoid and passing from P.

Clearly & is increasing in the loop so current flows to nullify the effect, i.e. the current is coming out

Now, the current by definition is moving "+" charge which would need a field coming out of page to get the direction of current we inferred. Hence

(b) The derivation is given on p-1060-1061. We repeat the arguments. Consider a loop of radius r concentric to the solenoid.



EB = B·TΓR², Since there is no flield outside (E.ds = -des the sole noid

=> E. 2πr = _TR2. dB

 $\Rightarrow |E| = + \frac{R^2}{2r} \frac{dB}{dt} = \frac{1}{2r} \frac{dB}{dt}$ determine the sign by Lenz law etc

we consider now a loop of radius r < R

then
$$\Phi_B = B \cdot \pi r^2$$
 since our loop is smaller

and (E.ds = E. 2TT

Hence in magnitude,

Leuz's law, as in part (a