The Interpretation of Quantum
Mechanics |

Throughout this book, we have relied on the Copenhagen inter-
pretation of quantum mechanics. This is the traditional interpre-
tation of the quantum-mechanical formalism. Its main features
were initially sketched by Heisenberg and by Bohr, and its details
were later filled in by many collaborators and disciples of Bohr at
the Institute for Theoretical Physics at Copenhagen. Because this
interpretation provides -us  with -only probabilistic information
about the state of a quantum-mechanical system, and because this
interpretation has some weird aspects that go counter to our intui-
tion, its adequacy has often been questioned. Several other inter-
pretations of quantum mechanics have been proposed, but none
has been judged clearly superior to the Copenhagen interpreta-
tion, which still remains the only widely accepted of all the inter-
pretations of quantum mechanics. Of course, scientific issues are
not decided by popularity polls, but the wide acceptance of the
Copenhagen interpretation means that a physicist who wants to
communicate some result or discovery in quantum mechanics will
feel compelled to couch the result in the language of the Copenha-
gen interpretation.

Critics of the Copenhagen interpretation do not challenge the
accuracy of the numerical results calculated from quantum me-
chanics. At a pragmatic level, quantum mechanics works per-
fectly—the numerical results for, say, the eigenvalues of the angu-
lar momentum and the energy of the hydrogen atom are found to
be in perfect agreement with experiment. But critics challenge
whether the Copenhagen interpretation really gives us the most
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dinger equation. The outcome of a single measurement of
an observable is unpredictable—the outcome can be any of
the eigenvalues within the spread of the probability distri-
bution. During the measurement, the state of the system
collapses into an eigenstate of the observable.

This list of features overlaps, to some extent, with the axioms
of quantum mechanics stated in Chapters 4 and 5. We could in-
clude all of these axioms in our list of features of the Copenhagen
interpretation, but some of these axioms—for instance, the axiom
for the time evolution of the state vector—do not pertain directly
to the interpretation of quantum mechanics, and this is why we
prefer not to include them here. We have used the features of the
Copenhagen interpretation in the preceding chapters. Now we
will discuss them critically. :

The fundamental assumption of the Copenhagen interpreta-
tion is that the state vector |) (or, in the position representation,
the wavefunction ¢s) provides a complete, exhaustive characteriza-
tion of the state of the system. This means that the state vector
encompasses all that can be said about the state of the system. The
other assumptions and prescriptions of the Copenhagen interpre-
tation are built upon this fundamental assumption.

In contrast to the classical characterization of the state -of a
system, where the instantaneous coordinates and momenta give us
a detailed picture of the instantaneous configuration of the system,
the quantum-mechanical characterization by means of the state
vector gives us merely the probabilities for the outcome of mea-
surements that we can perform on the system. For instance, if |E,.)
is an energy eigenstate, then |(E,|d)|2 gives us the probability that
the outcome of an energy measurement is E,,. From the probabil-
ity distribution for the different energy eigenvalues, we can calcu-
late the expectation value of the energy; alternatively, we can cal-

culate this expectation value, or average value, according to the
concise formula

E)= WHY (1)

where H is the energy operator. Similar formulas give us the ex-
pectation values of all other physical observables. Because the
state vector |§1), or the wavefunction Y, determines the expectation
values of all observables, Schrédinger has called the wavefunction
the “expectation-catalog.”
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We must resist the temptation to regard the wavefunction as
some kind of snapshop of the instantaneous configuration of the
system, in the way that, say, the classical wavefunction for a stand-
ing wave on a string is a snapshot of the instantaneous configura-
tion of the string. The quantum-mechanical wavefunction of, say,
an electron in an atom does not give us a picture of the shape of the
instantaneous configuration of matter or of electric charge in the
atom. Itmerely gives us the probability distribution of the electric
charge; it merely provides us with the means of calculating expec-
tation values. The quantum-mechanical wavefunction makes no
assertions about the instantaneous position of the electron or about
the instantaneous charge distribution in the atom. One of the ad-
vantages of the abstract state vector [y} over the wavefunction P is
that as long as we deal with the abstract state vector we are un-
likely to fall into the error of imagining the wavefunction as some
kind of actual configuration of electric charge in space.

Quantum mechanics does not supply us with concrete mental
pictures of the behavior of atoms and subatomic particles. Quan-
tum mechanics does not tell us what atoms and subatomic particles
are like; it merely tells us what happens when we perform mea-
surements. As Heisenberg said: “The conception of objective re- -
ality . .. evaporated into the . . . mathematics that represents no
longer the behavior of elementary particles but rather our knowl-
edge of this behavior.”! .

The emphasis of the Copenhagen interpretation on measure-
ments and on the procedures for measurements jg in accord with
the philosophical doctrines of positivism and operationalism. In
brief, positivism asserts that the only meaningful statements we
can.make about a physical system are those that are verifiable by
observation and experiment, and thus the only meaningful physi-
cal quantities are those that are measurable. And operationalism
asserts that the definition of any physical quantity must spell out
the experimental, or “operational,” procedure for measuring the

- quantity. According to strict positivist doctrine, the aim of science

is to describe and to predict, but not to explain; speculations about
unobservable and unmeasurable properties are held to be irrele-
vant.

This emphasis on measurements is a strength and also a weak-
ness of the Copenhagen interpretation: strength, since its lack of
commitment to any detailed model of the atomic and subatomic

! W. Heisenberg, Daedalus, 87, 99 (1958).
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world makes it nearly impregnable; and weakness, since it fails to
satisfy our craving for concrete mental images of atomic and sub-
atomic processes. Of course, we can imagine the wavefunction,
and this can help us to understand the mathematical properties of
¥; but when you imagine, say, the scattering of an incident proton
wave on a nuclear target, you are not seeing the physical behavior

" of the proton, only the mathematical evolution of the wavefunc-

tion.

In the Copenhagen interpretation, the meaning of the quan-
tum-mechanical probability distributions is quite different from
that of the probability distributions familiar from classical statisti-
cal mechanics. When a classical physicist has recourse to a proba-
bility distribution to describe, say, the speed of a molecule in a
gas, he does not mean to deny that the molecule has a perfectly
well defined speed at each instant of time; but he does not know
this speed—he only knows some macroscopic quantities of the
gas, such as the average density, temperature, and pressure.
Hence, in classical statistical mechanics, the probability distribu-
tion for molecular speeds reflects the ignorance of the observer of
the precise microscopic conditions in the gas. This kind of proba-
bility distribution is called an ensemble distribution, since it de-
scribes the average conditions for a large number of molecules in a
gas. In contrast, the quantum-mechanical probability distribution
does not reflect our ignorance of the instantaneous position and
momentum, but rather the non-existence of any well-defined posi-
tion and momentum. The quantum-mechanical system does not
consist of particles with well-defined albeit unknown positions
and momenta, but of “particles” with intrinsically indeterminate
positions and momenta. Thus, the quantum-mechanical probabil-
ity distributions (and the quantum-mechanical uncertainties Ax
and Ap,; see below) refer to an individual particle, not to an en-
semble of particles. An example due to Schrodinger brings this
distinction into clear focus: Consider a particle in an energy eigen-
state of the isotropic harmonic oscillator, say, a particle in the

ground state, with E = $%w. A classical probability distribution for \

this system with well-defined, but unknown, values of the position
and momentum would necessarily require that the distance of the
particle from the origin never exceed the distance at which the
energy 3%iw equals the potential energy (this is the classical turning
point of the motion); thus, if we were to assume that the particle
had a well-defined instantaneous position and momentum, the
probability distribution would have a sharp cutoff at the classical
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turning point.2 But the quantum-mechanical probability distribu-
tion has no such sharp cutoff—it permits the particle to penetrate
into the classically forbidden region beyond the turning point. (As
we already discussed in Chapter 3, this penetration into a classi-
cally forbidden region leads to no inconsistencies, because, in con-
sequence of the uncertainty relation, any attempt at detecting the
presence of the particle in the forbidden region introduces a large
uncertainty in the energy and blurs the distinction between the
forbidden and the permitted region.) The important lesson we
extract from this example is that the consistency of the Copenha-
gen interpretation demands that the quantum-mechanical proba-
bility distribution be associated with an individual particle.

This raises the question of how we can perform an experimen-
tal measurement of probabilities when we are dealing with a sin-
gle particle or a single system. A single trial, say, a single mea-
surement of the position of a particle with some given
wavefunction, cannot confirm the quantum-mechanical prediction
for the probability distribution of the position. At the most, the
single trial could prove quantum mechanics wrong—if the result
of the single trial is a position that according to quantum mechan-
ics has zero probability. For a comprehensive examination of the
probability distribution, we must repeat the trial again and again,
each time starting with the system prepared in the same way, so it
has the same initial wavefunction for each trial. In practice, it is
more convenient to prepare a large number of identical copies of
the system, and measure the distribution of positions across this
ensemble of copies. For instance, the measurement of the proba-
bility distribution in the diffraction pattern produced by an elec-
tron incident on a crystal is routinely performed by means of a
Beam of many electrons incident on the crystal. The diffracted
electrons emerge from the crystal and strike a fluorescent screen,
where they generate small flashes of light. Each flash of light
amounts to a repeated trial of the experiment. However, under

* typical experimental conditions, the electrons arrive at the screen

in quick succession, and we do not notice the individual flashes of
light. What we see on the screen is a more or less steady pattern of

2 Some hidden-variable theories bypass this requirement by modifying the
potential energy. Thus, a hidden-variable theory contrived by Bohm adds to the
ostensible potential energy $mw?x? of the harmonic oscillator an extra term de-
pending on the wavefunction y(x) (see Problem 3). The classical turning point is
then at infinity, and the probability distribution has no sharp cutoff.
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bright and dark zones, which give us a direct picture of the proba-
bility distribution (see Fig. 1.2). According to the Copenhagen
interpretation, the probability distribution for such an ensemble of
repeated trials of the diffraction experiment is equal to the proba-
bility distribution for each individual electron, and the width of
this probability distribution across the screen (or, more precisely,
the rms deviation from the mean) is equal to the uncertainty in the
position of each individual electron upon arrival at the screen. Of
course, after the electron interacts with some atom in the screen
and triggers the emission of a flash of light, the uncertainty in its
position will be much smaller (this final uncertainty depends on
the details of the interaction between the electron and the atom).
The state vector |{) presents us with a probability distribution
for the possible values for every observable quantity. In general,
this probability distribution spans several, or many, values of the
observable, and therefore the outcome of a measurement of the
observable is afflicted with uncertainties. Only in the exceptional
case that | is an eigenvector of the observable does this uncer-
tainty disappear—the outcome of the measurement is then certain
to be the eigenvalue. However, the commutation relations of
quantum mechanics place severe restrictions on what observables
can simultaneously be free of uncertainties, that is, what observ-
ables can have simultaneous eigenvectors: For-complementary
observables, such as the position x and the momentum p,., whose
commutator has the canonical form [x, p,] = i#, there are no simul-
taneous eigenvectors, and the certainty in one of these observables
implies total uncertainty in the other, in accord with the Heisen-
berg uncertainty relation

Ax Ap, = h @)

2
The uncertainties Ax, Apy, and other such quantum-mechanical
uncertainties refer to an individual particle, not to an ensemble of
particles. These quantum-mechanical uncertainties do not arise
from our ignorance of some underlying details of the state of the
particle or from some inadequacy of our measuring devices. In-
stead, the uncertainties reflect the nonexistence of such details;
they reflect an intrinsic spread in the position and the momentum
of the particle. The position and the momentum are not sharply
defined; they are indeterminate.

The uncertainty relations are often called indeterminacy rela-
tions, to distinguish the quantum-mechanical uncertainties from
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T}_us equation expresses determinism and causality, since it per-
mits us to predict the state vector at any later time from a given
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state vector at the initial time. Thus, in the words of Born: “The
motion of particles is subject [only] to probabilistic laws, but the
probability itself evolves in accord with causal laws.”3

12.2 Measurement and the Collapse

of the Wavefunction

The weirdest feature of the Copenhagen interpretation is that it
requires that the wavefunction suffer a discontinuous, unpredicta-
ble change during the measurement. Consider, for instance, the
impact of an electron on the fluorescent screen in the electron-
diffraction experiment. This impact and the flash of light released
in it constitute an (approximate) measurement of the position of
the electron. Just before this measurement, the wavefunction was
spread out all over the screen; immediately after the measure-
ment, the electron position is known to lie within some small spot
on the screen, and the wavefunction must therefore have an extent

- no larger than this spot. Thus, during the measurement, the wave-

function suffers an unpredictable collapse, or reduction. The col-
lapse is unpredictable, since we have no way of knowing onto
what part of the screen the wavefunction will collapse—we know
only the probability distribution of the spots-on which the wave-
function collapses, that is, the probability distribution of positions
for the electron on the screen.

Note that a single measurement tells us very little about the
wavefunction before the measurement. If a measurement finds an
electron at some spot, this tells us only that the wavefunction be-
fore the measurement was different from zero at that spot. But the
measurement tells us much about the wavefunction just after the
measurement. In general, a precise measurement of an observ-
able collapses the wavefunction into an eigenstate of that observ-
able. Thus, the wavefunction after such an ideal measurement is
precisely known. For instance, an ideal measurement of the posi-
tion of an electron collapses the wavefunction into a delta function

(the practical measurement with a fluorescent screen has a limited

precision, given by the experimental uncertainty; and the wave-
function after the measurement is not a delta function, but a wave
packet of a width of a few A). A measurement of the energy of an
electron collapses the wavefunction into an eigenstate of energy.

3 M. Born, Z. Phys., 38, 803 (1926).
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4
N. Bohr, Quantum Theory and the Description of Nature, Chapter 11
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see that the collapse process cannot be used to transmit messages
from one observer to another. For instance, consider an electron
wave that has spread out over a very large volume, say several light
years, and suppose that an observer at one end of this electron
wave detects the electron on her fluorescent screen and brings
about the collapse of the wavefunction. This means that it will
thereafter be impossible for another, distant observer to detect the
electron on his fluorescent screen; but this does not give this other
observer a message of any sort, since he has no way of knowing
that his attempts at detecting the electron have been condemned
to failure. The other observer is now on a fool’s errand—he can
continue to grope around searching for the electron, but he is
unable to conclude that the electron wave has collapsed until he
has explored every volume element in space, including the vicin-
ity of the first observer, where, of course, he will finally get the
message.

‘The change of the wavefunction during the collapse is not
governed by the Schrédinger equation. As we will see in Section
12.3, the Copenhagen interpretation brazenly postulates that this
collapse is merely a mathematical procedure, not a physical pro-
cess. We might be tempted to suppose that the collapse is pro-
duced by the dynamics of the interaction of the measured system
with the-measuring apparatus.- But such an-interaction, if treated
according to the time evolution specified by the Schrodinger equa-
tion, is not by itself enough to bring about the collapse of the
wavefunction. For instance, when the diffracted electron wave
strikes the fluorescent screen, it interacts with all the atoms in the
screen and scatters off them with some loss of energy (inelastic
scattering). This interaction of the electron with the atoms in the
screen tells us the probabilities for the emission of flashes of light
by the atoms, but it does not tell us which of the many atoms on the
screen will actually emit the light, and thereby signal the collapse
of the electron wavefunction into its vicinity. Thus, although the
interaction of the system and the measuring apparatus is required
for the measurement to be possible, the collapse is not produced
by this interaction. ‘

It might be argued that single atoms, or groups of atoms, in th
fluorescent screen do not constitute a macroscopic measuring de-
vice, and that therefore the collapse is to be expected to occur only
at the next stage of the measurement process, when the flash of
light from the screen triggers a macroscopic measurement device,
such as a photomultiplier tube or the human eye. The interaction
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few photons, which reveal the presence of the atom when they
trigger the photomultiplier tube. Since the resolution of this sim-
ple optical detector is of no concern to us, we can use photons of
long wavelength, which hardly disturb the atom at all. Note that
this apparatus contains two basic elements: a discriminating de-
vice (the inhomogeneous magnetic field) that sends the atom one
way or another according to the vertical component of its spin, and
an amplifying device (the photomultiplier) that produces a macro-
scopic pulse of current when triggered by an incident atom.
These two basic elements are quite typical of most measuring
devices used for measurements on quantum systems.

We can easily see that as long as the atom, the apparatus, and
their interactions are governed by the Schrodinger equation, a
collapse of the state vector is not possible. We assume that the
atom has spin } and that the initial state of the atom is some super-
position of the spin-up and spin-down states, say, the superposi-

tion

L

75 (4 + 1) )

which corresponds to an initial state of horizontal spin, in the +x
direction [see Eq. (9.33)]. According to the usual rules for calcu-
lating probabilities for the outcome of a measurement, this initial
state of the atom has a probability of % for spin up, and 3 for spin
down. The initial state of the detectors, before the measurement,
is that neither of them has been triggered; we designate this state
by |none). The initial state vector for the joint atom—detector sys-

tem is then
1
W) = =

Note that in this state vector we have not bothered to indicate
explicitly the state of translational motion of the atom. Within the
approximations of the Stern—Cerlach experiment, the translational
motion of the atom proceeds according to the classical mechanics,
and the upward or downward displacement of the trajectory for the
spin-up or the spin-down state is completely determined by the
(classical) parameters of the apparatus. Thus, there is a unique
correspondence between spin states and trajectories, and we can
pretend that the spin states |+) include an implicit specification of
translational states.

(1+) + =) Inone) = = |+) [none) + J5 1) lnone)  (3)

S 1
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The atom passes through the apparatus and interacts with the
deFectors. During this interaction, which is described by some
suitable interaction Hamiltonian, the spin-up state triggers the up-
per detector, but not the lower; we designate the corresponding
state vector of the detectors by |upper). The spin-down state trig-
gers t‘h.e lower detector, but not the upper; we designate the corre-
sponding state vector by [lower). Thus, if the initial state were.one
or the other of the states of definite spin, the interaction duriné the

easurement would produce the following transiti o
! g transition
final state: ition to a definite

|+) [none) — |+) [upper)  or * |-) |none) — |-) [lower)  (6)

Since the Schrodinger equation is linear, the superposition (5) of

initial states will therefore prod i
produce a correspondi iti
of final states: P ne superposition

1
) = 75 |+) lupper) + % |- [lower) )

Thus, the result of the interaction is not a collapse into one or
another of the states of definite spin up or down and a definite
response from the detector, but a superposition in which the spin-
up and spin-down states are correlated with the detector states
But such a superposition cannot be regarded as a completed mea—l
su.rement, since it fails to make a definite choice between the
spin-up and spin-down states. In fact, the state vector (7) is merel

the initial state vector (5) translated in time. With a slight modiﬁ}-]

cation of the apparatus, it is even possible to restore the initial

horizontal spin state of the atom by a further translation in time. If
we gdgl a second magnet to the apparatus in tandem with the ﬁrst
an.d with a reversed magnetic field, then the trajectory of the atom
yvﬂl suffer a reversed displacement in the second magnet, and the
initial spin state of the atom will be restored when the u};per and
the lower trajectories again merge into one.’ Such a restdration of
the .horizontal spin state demonstrates that our Stern—Gerlach ex-
periment cannot be regarded as a completed measurement of the
vertical component of the spin.

P . .
. In order to achieve a complete restoration of the initial state vector, we also
dave to reset the detectors, so their state vector is restored to [none). Since the
‘ e(tfctors are macroscopic devices, a restoration to the exact initial quantum state
is llfﬁcllllt’f perhap; 11mpossible. Some versions of the Copenhagen interpretation
use lack of reversibility as a criterion for what constitutes

v a completed m -
ment (see the next section). g s
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Although the state vector (7) does not, in itself, provide an
adequate description of the outcome of a measurement, we might
hope that we can bring about its collapse into one or another of the
two states of this correlated superposition by performing a mea-
surement on the joint atom—apparatus system. For this purpose,
we might employ a secondary apparatus that observes the primary
apparatus and checks which detector has triggered. The usual
rule for calculating probabilities tells us that such a measurement
on the state vector (7) has a probability of % for the result |+)
|upper) and a probability of } for the result |—) |lower); thus, the
probabilities for the outcomes of the secondary measurement are
consistent with the probabilities for the primary measurement that
we attempted with the Stern—Gerlach apparatus. However, if the
secondary apparatus and its interaction with the primary apparatus
are, again, governed by the Schrodinger equation, then this at-
tempt at a measurement yields, again, a superposition:

) = % |+) |upper) |upper confirmed)
+ % |- |[lower) |lower confirmed) (8)

From this example we see that stacking one apparatus on top of
another does not bring about the desired collapse of the state vec-
tor.

The absence of collapse in any system governed by the Schro-
dinger equation—and the concomitant impossibility of bringing a
measurement to completion, no matter how many apparata are
stacked one on top of another—is called von Neumann’s catastro-
phe of infinite regression. This absence of collapse was estab-
lished by von Neumann, who made the first rigorous examination
of the mathematical foundations of quantum mechanics. Von
Neumann decided that the collapse of the state vector during mea-
surement must be inserted into quantum mechanics as a separate
axiom. If we arrange any number of apparata in a sequential stack
(with a primary apparatus, a secondary apparatus, a tertiary appa-
ratus, etc.), in which each apparatus checks on the apparatus rank-
ing below it and is, in turn, checked by the apparatus ranking
above it, we must postulate that the collapse of the state vector
occurs somewhere in this stack. As in the cases of one or two
apparata discussed in connection with Egs. (7) and (8), the proba-
bilities for the different outcomes of measurement are unaffected
by whether we postulate that the collapse occurs in the primary
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afparatus, or the secondary apparatus, or the tertiary apparatus
etc. ,

Apart from its inadequacy for describing the outcome of a
measurement, the state vector (7) has some weird properties. This
state_: vector represents an ambivalent state, in which the detectors
are in a schizoid superposition of having triggered and not having
triggered. Such superpositions are a familiar feature of the atomic
or subatomic world, and since we have no direct experience with
that world, our intuition is willing to accept such superpositions in
that world. But in Eq. (7) we encounter such a superposition in
the macroscopic world, where it directly clashes with our intui-
tion.

The weirdness of such superpositions of macroscopic states is

brought to an extreme in a
celebrated Gedankenexperiment -
trived by Schrédinger:6 g o

A cgt is locked into a steel chamber, along with the following diabolical
device (which one must secure against direct intervention by the cat):
In a Geiger counter there is a minuscule amount of radioactive sub;
stance, so small, that in the course of one hour perhaps one of the atoms
decays, but also, with equal probability, perhaps none; if it happens, the
counter tube discharges and through a relay releases a hammer wilich
shatte_rs a small flask with hydrocyanic acid. If one has left this entire
system to itself for an hour, one would say that the cat still lives if
me.anwhile no atom has decayed. The first atomic decay would have
p01s'oned it. The y-function of the entire system would express this by
having in it the living and the dead cat (pardon the phrase) mixed or
smeared out in equal parts.

Although such a schizoid superposition of a live-cat state vec-
tor and a dead-cat state vector does violence to our intuition. we
cannot disprove it by any experiment. As soon as we open’ the
chamber, or use any measuring device to detect the life signs of
the cat, the state vector collapses into either the live-cat configura-
tion or the dead-cat configuration, with equal probabilities. Thus
we can never “see” the cat in the superposed state. Instead the’
act of observation or of measurement does something very driclstic
to the state of the cat—it flips the cat into either the live state or the
dead state.

Wigner has added an extra wrinkle to this Gedankenexperi-
ment by proposing that we omit the cyanide capsule and that we

6 E. Schrodinger, Naturwiséenschaften 23, 8
> » 23, 807 (1935); a translati i
paper appeared in Proc. Am. Philos. Soc., 124, 323 (1980). ranS‘aUOH of this
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replace the cat by a human volunteer, Wigner’s friend. We let
Wigner’s friend watch the Geiger counter for a while, and then
open the chamber, and ask her to tell us what has happened. If
Wigner’s friend tells us that the Geiger counter clicked some time
ago, we would presumably have to conclude that her presence in
the chamber was enough to collapse the state vector, and that our
opening of the chamber had no further effect-on the state vector.

12.3 Alternative Interpretations of the Collapse

Physicists have made a variety of attempts at resolving the conun-
drum posed by the collapse of the wavefunction during measure-
ment. Most of these attempts accept the main features of the Co-
penhagen interpretation (listed in Section 12.1), but propose
different ways of dealing with the collapse. Here we will briefly
discuss four such attempts: the orthodox Copenhagen picture, the
popular picture, the subjective picture, and the many-worlds pic-

ture.”

Orthodox Copenhagen Picture. This is the picture conceived
by Bohr and by Heisenberg.? An essential feature of this picture is
that the results obtained in any experiment are to be described in

“classical terms. Bohr argued that such a classical view of experi-
mental results is imperative to enable physicists to communicate
these results to each other: “However far the phenomena tran-
scend the scope of classical physical explanation, the account of all
evidence must be expressed in classical terms. The argument is
simply that by the word ‘experiment” we refer to a situation where
we can tell others what we have done and what we have learned
and that, therefore, the account of the experimental arrangement
and of the results of the observations must be expressed in unam-
biguous language with suitable application of the terminology of
classical physic's.”9 Thus, the apparatus is supposed to indicate
the result of a measurement with a well-defined pointer position

7 There is no general agreement on names for these and other different pic-
tures, or even on the number of different pictures.

8 The following discussion is based mainly on the exposition of the Copenha-
gen interpretation given by Heisenberg in his Physics and Philosophy, Chapter
III. Bohr never gave such a systematic exposition of his views; but the isolated
statements that he made are consistent with Heisenberg’s views.

9 N. Bohr, Atomic Physics and Human Knowledge, p. 39.
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on i . Ly
on jeigs t;)}r a well-defined digital readout, without any significant
The orthodox Copenhagen picture does not claim that the
laws of quantum physics are inapplicable to the apparatus; on the
contrary', Bohr was quite aware that quantum physics is ult’imate]
responSIbl.e for all the properties of the materials out of which ch
app:aratus Is constructed, and, in his refutation of the Gedankeﬁex-
perimente of Einstein (see Section 12.4), he did not hesitate to
apply the uri‘certainty relations to macroscopic pieces of equip-
ment. But a “good” apparatus is supposed to be designed in such
a way that quantum uncertainties in the readout are insigniﬁcaht
A.c.cordlng to Bohr’s criterion for a “good” apparatus, if a super o:
sition of different macroscopic apparatus states—suc’h as Eqp (71))—
ijhtire to OCCT’ it W(ziui(}il demonstrate an inadequacy in the (iesign
€ apparatus, an e inability - is % bri
e A ,Completion_ablhty of this apparatus to bring the
In the orthodox quenhagen picture, the collapse of the wave-

Ferlal entity, merely a mathematical construct. The wavefunction
is the expectation catalog that characterizes the quantum system
This ?atalog lists all the possible outcomes for all the possiblé
experiments we might perform on the system; it tells us that if we
pe.rforn? Some experiment, then the outcome will be this or that
with this or that predicted probability. As long as we do not per:
form any experiment on the system, the expectation catalog
eyolves continuously in time, according to the Schrodinger equa-
tion. But if we perform an experiment on the system and measure
'some_observable, the expectation catalog changes discontinu-
o‘usly.'Du‘ring the measurement, one of the possible outcomes
listed in the expectation catalog becomes the actual outcome. and
a.ll the other outcomes are rejected. This means that the exp,ecta-
tion catalog must suddenly be altered—all the entries in the cata-
log must be deleted, except, of course, the one entry that became
actual. But this sudden alteration, or collapse, of the expectation
catalog is merely a reflection of our sudden change of knowledge
The only definite physical change during the measurement is the;
change that occurs in the apparatus, which switches from one well-
defined state to another.

Bpth Bohr and Heisenberg have emphasized that the wave-
function does not tell us what actually happens in the quantum
S}'/stem between one measurement and the next; it does not pro-
vide a history of events in the quantum svstem. The wavafionn.
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tion, in conjunction with the Schréodinger equation, merely tells us
that if we perform a given experiment on the system at one time |

" (say, a measurement of the x component of the spin of an atom), |
and some other given experiment at a later time (say, a measure-
ment of the z component of the spin), then the outcome of the
second experiment is probabilistically related to the outcome of
the first. Thus, the mathematical machinery of quantum mechan-
ics provides us with probabilistic connections between one exper-
iment and the next, but it does not provide us with a mental pic-
ture of what happens in between (as already mentioned in Section |
12.1, we must not confuse a mental picture of the time evolution of
the wavefunction with a mental picture of the quantum system
itself). Quantum mechanics tells us nothing about the quantum
system itself, only about what happens in measurements. In
Bohr’s words: “The formalism of quantum mechanics is to be con-
sidered as a tool for deriving predictions of a . . . statistical charac-
ter as regards information obtainable under experimental condi-
tions described in classical terms.””10

The orthodox Copenhagen interpretation insists on a sharp
dichotomy between quantum system and apparatus. We must be-
gin any description of an experiment by specifying the system to
be measured, the apparatus with which it is to interact, and the
dividing line, or the Heisenberg cut, between the system and the
apparatus. The state of the quantum system is characterized by its
wavefunction, but the state of the apparatus (or, at least, the state of .
the readout end of the apparatus) is characterized by well-defined I
classical parameters.

Although we must draw a sharp line between the quantum
system and the apparatus, we have considerable freedom in just |
where we draw this sharp line. As is clear from the discussion of L' |
Egs. (7) and (8), the probabilities for outcomes of measurements
are not altered when we extend our quantum system so as to in-

- clude some part of the apparatus with which it interacts during the

‘ measurement. For instance, if we attempt to detect a photon with

, a photomultiplier tube, we can regard the photon as the system
and the photomultiplier tube as the apparatus. Alternatively, we
can regard the photon and some portion of the photomultiplier
tube as the system and the remainder as the apparatus. In the
photomultiplier tube, the incident photon ejects a photoelectron 3 |
from the faceplate, this electron strikes the first dynode and ejects

T T T T e ——

10 N. Bohr; see ]‘ammer, The Philosophy of Quantum Mechanics, p. 204.
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several electrons; each of these strikes the second dynode and
ejects more electrons, and so on. We can draw the dividing line
between system and apparatus at the faceplate, or at the first
dynode, or at the second, and so on. Depending on our choice of
dividing line, the measured system will consist of a photon or a
photon and one or several electrons; accordingly, the wavefunc-
tion of the system will have to include the wavefunction of these
electrons. However, the Copenhagen picture does not permit us
to shift the dividing line all the way to the output end of the
photomultiplier, where a classical pulse of current emerges. Ac-
cording to Bobhr, the classical mode of description becomes com-
pulsory by the occurrence of an irreversible process of amplifica-
tion; this brings the measurement to completion. This criterion
for the completion of a measurement has been enthusiastically
advocated by Wheeler who declared: “A phenomenon is not yet a
phenomenon until it has been brought to a close by an irreversible
act of amplification, such as the blackening of a grain of silver
bromide emulsion or the triggering of 'a photodetector,” 11
Wheeler has emphasized that a decisive test for the completion of
a measurement is the registration of the information acquired in
the measurement, in the form of a permanent, indelible record.
In the Gedankenexperiment of Schrédinger’s cat, the orthodox
Copenhagen interpretation claims that the quantum-mechanical
wavefunction collapses when the Geiger counter makes a mea-
surement on the radioactive substance, and therefore the state of
the Geiger counter (and the state of the cat) never forms a superpo-
sition of two macroscopically different states. At each instant, the
Geiger counter either performs an irreversible act of amplification
or does not perform such an act, that is, the Geiger counter adopts
either a definite state of discharge or a definite state of no dis-
charge. This means that the Geiger counter acquires information
about the radioactive decay, and brings about the collapse of the
wavefunction of the radioactive substance. The human observer
is not required to bring about the collapse. When the observer
opens the chamber, he receives the information about the col-
lapsed wavefunction; but since this information was already avail-
able in the output of the Geiger counter, he produces no further
collapse of the wavefunction.
Although the criterion of irreversible amplification for the

. YT A Wheeler in Quantum Theory and Measurement, edited by J. A.
Wheeler and W. H, Zurek, p. 185.

=
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completion of 2 measurement and the collapse of the wavefunction
seems quite plausible, it is fraught with ambiguities. In a photo-
multiplier tube the amplification increases by stages. At what
stage of this process of successive amplifications with successively
increasing irreversibility will we attain sufficient amplification
and sufficient irreversibility for the completion of the measure-
ment? Furthermore, the amplification process spans some time,
and this raises the question of whether perhaps the collapse of the
wavefunction is also spans some time, which would mean that the
collapse is not truly discontinuous.

Popular Picture. Physicists have a deep predilection for con-
tinuity in nature (Natura non facit saltus), and they tend to be
uncomfortable with the discontinuous collapse and with the some-
what capricious dichotomy between measured system and appa-
ratus demanded by the orthodox Copenhagen picture. The popu-
lar picture is an alternative to the orthodox Copenhagen picture; it
is favored by many, perhaps by most, of the physicists of today. In
the popular picture, there is no collapse. The state vector evolves
continuously at all times, according to the Schrodinger equation.
Both the system and the apparatus are treated quantum-mechani-
cally, and they are described by a joint state vector. A measure-

ment-is regarded as an interaction between-the system and the

apparatus, as in our example of the Stern—Gerlach experiment of
Section 12.2. During such an interaction, the state vectors of the
system and the apparatus become correlated, and .the joint state
vector forms a superposition of these correlated state vectors.
Thus, in our example of the Stern—Gerlach experiment, the result
of the measurement is the joint state vector

) = 5 [+)lupper) + 75| llowen ®)

Consider, now, the expectation value of any operator R that
acts on the spin states (but not on the apparatus states). According
to the usual prescription for the calculation of an expectation

value,
(y|R|y) = %((+]R|+) (upper|upper) + (—|R|—) (lower|lower)
+ (+|R|-) (upper|lower) + (—|R|+) (lower|upper)) (10)

The two apparatus states are, of course, normalized, with (up-
per|upper) = 1 and (lower|lower) = 1. But the apparatus states
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z;e al.sct> grthogom}lf since the triggering of one detector has no
trisg;c;; ;}g O?roobalc)llhty for triggering of the other detector (if the
, ne detector tends to produce a tri ‘
detector, there is a defect i ' imoring of the other
, ect in the design of the electri i
\ ¢ connections
in the apparatus, and the experimenter must repair the appa-

ratus). Thus, the last two terms i .
terms reduce to s in Eq. (10) vanish, and the first two

(IR = $(+|R|+) + (~|R|-)) (11)

353;8;%{1‘12 1; the same as what we obtain if we take the expectation

cOuapsoed Sta(;r thetco]llaq))lsled state vector |+)|upper) and for the

e vector | —)|lower), and we avera i

. , ge these two possi-

t}illz ;}fprectat?)n values. We therefore reach the conclusion thzt on

the a ;aailg:; So.r rflll)eaged m(i:lasurements, the expectation value (;f R

‘ same as i the Copenhagen picture. Thus, alth

individual measurement. th ‘ e ¥ fox each
, the collapsed state vectors |+

i ure s upper

an(ti (li ) lowe'r> d'lffer from the superposed state vector (g) >\lvep(l,‘)an2

no t (te.tect this difference experimentally, because the av:arage ex-

pectation values for repeated measurements are indistinguishable

Elffi;(]:lzia:é \'f‘h(z ca}g;llatiolrll leading to Eq. (11) was based on the simple
ector (), with equal coefficients for the spi i
foa state vect . or the spin-up and spin-

. Repeat the calculation for a injtial
Repea general initial state isti
of a superposition of spin-u i oty cootts
. p and spin-down states with arbit
cients ¢; and ¢y. Show that the ex i A Aa
) , expectation values (y|R|y) is, agai
’ : ‘ , again, an
average of the two terms given in Eq. (11), but with weights le1]2 and

o |2
lea|?. Thus, the general result is in i
o et agreement with the Copenhagen in-

This means that in the popular picture there is collapse with-
out collapse: the state vector does not really collapse, but th
results for expectation values are the same as though it’ had ¢ le
lapsed. When we want to calculate an expectation value, we an
the'refore use collapse as a shortcut. As Eq. (11) shows , we cC::Lm
omit the state vector of the apparatus in our calculation’ and .
can pretend that the state vector of the system has collaps:ad to l‘:lv-e):
;)rlto ]I— ) . Thi§ shortcut always yields the same result as the honest
an.CI(lgz)l.tlon with the true, uncollapsed joint state vector given in

From Eq (10) we see that what permits the uncollapsed state
vector tg mimic an average calculated from the collapsed stat
vectors is the cancellation of the last two terms in this equatizne
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that is, the off-diagonal terms. A somewhat different version of the
popular picture attempts to achieve such a cancellation by exploit-
ing unpredictable, random phase differences that are supposedly
introduced into the state vector for the system when it interacts
with the apparatus during measurement.!? This version of the
popular picture argues that the microscopic quantum state of the
apparatus is not known, and is not reproducible from one repeti-
tion of the measurement to the next; even if we “reset” the appa-
ratus for each repetition of the measurement, there will be uncon-
trollable and unpredictable fluctuations in its microscopic
quantum state. When the measured system interacts with this ap-
paratus, the different superposed parts of its state vector acquire
different, random phase factors, which make the different parts in
the superposition incoherent. But an incoherent superposition of
several state vectors is equivalent, on the average, to an ensemble
of collapsed state vectors. We can understand this equivalence
between an incoherent superposition and an ensemble of col-
lapsed state vectors by means of our simple example of measure-
ment of the spin of an atom in a Stern—Gerlach experiment. The
initial state vector of the atom [see Eq. (4)] is a coherent superposi-
tion of the spin-up and spin-down states. If the interaction with
the apparatus inserts extra, random phase factors into this superpo-
sition, we obtain a final state vector

|¢>=%|+>+ﬁ;§|—> (12)

Such a superposition with random phase factors is called a mix-
ture. According to Eq. (12), the expectation value of any arbitrary
operator R is then

WIRIW) = 5 (+[RI+) + 3 (~[B]-)

ei(a1~a2)

+ 5 (=|R|+) +>

ei(az—al)

s—(+IR-) (1)

‘For random phases a1 and ag, the factor ei®—) averages to zero

when we perform the measurement repeatedly, and therefore the
average value of (13) over repeated measurements is simply

IR = 3 (+RI+) + (~[R]) (14)

12 D, Bohm, Quantum Theory, Chapter 22, Sections 6—12.
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Note that here, as in Eq. (10), the off-diagonal terms have can-
celed. We therefore, again, reach the conclusion that, on the aver-
age, for repeated measurements, the expectation value of R is the
same as for the Copenhagen picture.

The cancellation of off-diagonal terms by random phases [Eq.
(13)] seems simpler and more straightforward than the cancel-
lation by orthogonality of apparatus states [Eq. (10)]. However,
the random-phase scheme suffers from a fatal defect. The phases
must ultimately arise from the interactions between the system
and the apparatus. If we want to calculate these phases, we must
begin with an initial joint system—apparatus state vector, such as in
Eq. (5), and we must investigate its time evolution during the
interaction. The result will then be 3 correlated joint system—ap-
paratus state vector, such as in Eq. (7), with extra, random phases.
But this state vector cannot be factored into a product of a system
state vector of the form (12) and some apparatus state vector.
Thus, interactions cannot lead to a final state vector of the form of
Eq. (12) for the system after the measurement.

Although random phases by themselves do not provide a consis-
tent picture of the collapse, random phases could possibly play an
ancillary role in suppressing interference effects in the correlated
joint system—apparatus state vector given in Eq. (9). One diffi-
culty with this state vector is that, to the extent that the system—
apparatus interaction is reversible, the state vector (9) could possi-
bly evolve back into the initial state vector (5). But if the two
terms in the state vector (9) acquire extra, random phase factors e
and e, then the measurement becomes irreversible. Once the
system has acquired random phases, we have lost essential infor-
mation about the state vector, and we cannot reverse the evolution
of the state vector in time and return to the initial state. Thus, the
picture of random phases provides us with an explicit model of
how irreversibility might enter the measurement process.

Subjective Picture. Another proposal for the collapse is that it
is produced in the mind of the observer, by the intervention of the
observer’s consciousness. This notion was first proposed by von
Neumann. As we saw in the preceding section, no apparatus gov-
erned by the Schrodinger equation can bring about the collapse,
and neither can a stack of apparata arranged to check on each
other. However, experience tells us that if a human observer is
looking at one of the apparata in the stack, he always perceives the
apparatus in a definite state. This forces us to accept that the col-
lapse occurs, somehow, no later than in this observed apparatus or,
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at the most, no later than within the human observer. Since any
apparatus is built of atomic or subatomic pieces, it presumably
obeys the Schrédinger equation, and is free of collapse. As a last
resort, von Neumann therefore suggested that the collapse occurs
when the signals from the apparatus register in the observer’s con-
sciousness. This picture of the collapse process was adopted by
London and Bauer!3 and by Wigner,'4 who saw in it the resolution
of the conundrum posed by the Gedankenexperiment of Wigner's
friend (see Section 12.2). Wigner proposed that the collapse is
brought about by some (unknown) nonlinear process whenever
the quantum system interacts with the consciousness of an ob-
server. _

But this proposal raises some awkward questions. Exactly
what is meant by “consciousness”? What level of consciousness is
sufficient to bring about collapse? Is human consciousness re-
quired, or is that of a cat or of a mosquito sufficient? Some of these
questions can be bypassed by postulating that there is only one
consciousness (my own) in the entire universe. This is the philo-
sophical doctrine of solipsism. It is logically unexceptionable, but
itis viewed with distaste by most physicists, whose scientific train-
ing tells them to be cautious about accepting claims made by one
observer alone.

Many-Worlds Picture. Another, radically different treatment
of the collapse problem is the many-worlds picture of Everett.!5
In this picture, as in the popular picture, there is no collapse, and
the state vector evolves according to-the Schrodinger equation at
all times. But the many-worlds picture differs from the popular
picture in that it includes the observer as part of the quantum-
mechanical system. Thus, the many-worlds picture eliminates the
dividing line (Heisenberg cut) between the observer and the appa-
ratus, whereas the popular picture implicitly retains this dividing
line. The interaction between measured system, apparatus, and
observer produces a joint state vector consisting of a superposition
of correlated joint state vectors. For instance, in the example of

- the Stern—Gerlach experiment in Section 12.2, the state vector for

<

13 F. London and E. Bauer, La théorie de I'observation en mécanique quan-
tique (Hermann, Paris, 1939). Translated in Quantum Theory and Measurement,

- edited by J. A. Wheeler and W. H. Zurek.

14 E Wigner, Symmetries and Reflections, p. 183.
15 H. Everett, Rev. Mod. Phys., 29, 454 (1957).

" ate vicinity.
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the joint atom—apparatus—observer system after the measurement
is a correlated joint state vector of the form given in Eq. (8), where
we now regard the states [upper confirmed) and [lower confirmed)
as states of the observer. The many-worlds interpretation insists
that such a schizoid superposition with two or more terms, or
“branches,” with different observer states, is the correct descrip-
tion of the outcome of the measurement. The two terms in the
superposition (8) are interpreted as one branch in which the appa-
ratus has detected spin up and the observer has seen the apparatus
detect spin up, and one branch in which the apparatus has de-
tected spin down and the observer has seen it detect spin down.
Thus, in each branch the state of the observer is consistent with
the state of the apparatus, and in each branch the observer is un-
aware that something different has happened in the other branch,
or even that there is another branch.

Although all of the branches exist simultaneously, the cloned
observers in the individual branches do not interact,'® and they
remain forever unaware of each other. The cloned observers ef-
fectively inhabit separate worlds. Whenever there is a measure-
ment, the history of the world splits into two or more branches,
corresponding to the different outcomes of this measurement.
Note that in the many-worlds picture, any measurement-like inter-
action occurring anywhere gives rise to new branches; thus the
universe is continually splitting into a myriads of branches, and

- each of us is continually splitting into myriads of clones, even

when the measurements are not being performed in our immedi-

In the many-worlds picture, we cannot directly interpret the
coefﬁcient 1/V2in Eq. (8) as probability amplitudes, since there is
no external (outside-the-universe) observer who can measure the
state of the system. When the observer is in the state |upper con-
firmed), he is not aware of the other state, or of the coefficients
1/\/5. So how can he obtain probabilities in measurements? To
answer this question, the many-worlds picture examines what hap-
pens if the observer performs a sequence of repeated measure-
ments and records (or remembers) the results. Each measurement
generates a new branch of the world, and after all the repeated

16 The matrix element of the Hamiltonian is zero between any two distinct
macroscopic states; if this were not so, then the Hamiltonian could produce transi-
tions from one state of the apparatus or observer to the other, that is, it could
change what the apparatus has detected or what the observer has seen.




368

Ch. 12 / The Interpretation of Quantum Mechanics

measurements are completed, there are many branches. At the
end of each branch sits a clone of the observer with a sequence of
results in his memory, for instance a sequence + + =+ + — — —
+—++... orasequence +——+—+—+++—+.... Ever-
ett proved that for almost every one of these many branches, the
sequences of +’s and —’s are random.!” Thus, almost all the
cloned observers will decide that they have verified the prediction
of quantum mechanics for repeated measurements of the spin.
Everett takes this to mean that in a “typical” branch of the world,
the predictions of quantum mechanics will be verified; and he
assumes that our branch—that is, the branch at the end of which
we sit—is a typical world.

12.4 The Einstein—Ponlsky—Rosen Paradox

The fundamental assumption of the Copenhagen interpretation is
that the physical state of an individual system is completely speci-
fied by the wavefunction . This fundamental assumption leads to
the uncertainty relations, which tell us that the coordinates and
momenta are indeterminate, and that causality, in the sense of
classical mechanics, is impossible. Physicists brought up in the
traditions of classical mechanics found it hard to accept these fea-
tures of quantum mechanics. The most illustrious and most severe
critic of the Copenhagen interpretation was Einstein, who insisted
that even in the realm of the atom there must exist precisely de-
fined dynamical variables and strict deterministic behavior. In
view of the practical success of quantum theory, Einstein was will-
ing to accept that |s|? gives a probability distribution, but he in-
sisted that this probability distribution must be interpreted as an
ensemble distribution, which does not arise from an intrinsic inde-
terminacy of the dynamical variables, but only from our ignorance
of their values. ‘

Over the years, Einstein challenged the completeness as-
sumption of the Copenhagen interpretation by a variety of clever
Gedankenexperimente. At first, the thrust of these was directed at
the uncertainty relation. Einstein wanted to find a counterexam-
ple to these uncertainty relations, by contriving some measure-

17 More generally, if the terms in the superposition have different coefficients
¢y and ¢y, the numbers of +’s and ~’s in the sequences are weighted in proportion
to |c1|? and |eg|2.
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ment procedure that would simultaneously determine the coordi-
nate fmd the momentum of a particle. One such Gedanken-
experiment, proposed by Einstein in a discussion with Bohr at the
1928 Solvay Meeting, was based on the momentum exchange be-
tween the incident particle and a slotted plate, such as might be
use'd to demonstrate diffraction effects. Figure 12.2 shows the ex-
pe.gnrne.ntal arrangement (in the arrangement actually examined by
Einstein a:nd Bohr, another plate with two slots was placed in
tar.ldem with the single-slot plate, but this is an unessential com-
pllcat%on). The particle is incident on the plate from the left, suf-
fers diffraction while passing through the slot, and lands at ;ome
(unpredictable) position on the screen at the right. The passage
th'rough the slot amounts to a measurement of the vertical position

with an uncertainty Ay = g, the width of the slot. In the usuai
analysis of this Gedankenexperiment, the vertical momentum is
calculated from the diffraction angle, which is known from the
observed impact point on the screen; obviously,

Py = psin 6 (15)

The uncgrtainty in the angle 6 is roughly given by the width of the
central diffraction peak, A(sin 6) = Ma = h/ap, which leads to an
uncertainty Ap,,: :

_ . _h _h
Apy, = p A(sin 0) = p a = (16)
The product of the uncertainties in y and p, is therefore
Ay Ap, = a h =h
y=aq 17)

which is consistent with the uncertainty principle.

Fie. 199 A olatiad wdate oo 1 1. 1.0
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However, Einstein proposed to modify this Gedankenexperi-
ment; he proposed to measure the momentum p,, not by the im-
pact point on the screen, but by the recoil suffered by the plate.
For this purpose, he suggested that the plate be loosely suspended
(by the springs in Fig. 12.2), so it can move and its recoil motion
can be determined. Since the recoil momentum of the plate,
which is a large macroscopic body for which the laws of classical
mechanics ought to hold, can presumably be measured with arbi-
trary precision, it should be possible to violate the uncertainty
relation. But Bohr was quick to notice that the plate is itself sub-
ject to the uncertainty principle, and if its momentum is measured
with an uncertainty of Ap, smaller than h/a, then its position will
become uncertain by an amount in excess of h/Ap, = g, and this
means that the momentum and the position of the particle de-
duced from the position and the momentum of the plate will,
again, obey the uncertainty relation.

In fact, it is easy to see that the uncertainty relations are self-
consistent: if all bodies obey the uncertainty relations, then a mea-
surement of one body by another can never lead to a result that
violates the uncertainty relation. But it is crucial for this consis-
tency that all bodies in the universe obey the uncertainty relation;
if there were some purely classical body somewhere, with per-
fectly well-defined position and momentum, then by examining
the collision of this body with another body, we could violate the
uncertainty relations for the position and momentum of this other
body. :
Blocked in his direct attacks on the uncertainty relations, Ein-
stein, in a joint venture with Podolsky and Rosen,!8 launched a
more subtle attack on the completeness assumption on which the
uncertainty relations are based. Their argument, which became
known as the Einstein—-Podolsky—Rosen (EPR) paradox, begins
with the hypothesis that the quantum-mechanical predictions for
the results of measurements are correct and tries to show, by
means of a Gedankenexperiment, that the quantum-mechanical
description of the state of the system is incomplete, that is, the
system is endowed with physical properties that go beyond those
permitted by quantum mechanics. _

The EPR paradox hinges on the examination of the joint quan-
tum-mechanical state of two particles that are initially correlated
in such perfect way that a measurement performed on one of the

18 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935).
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particles immediately tells us the state of the other particle, with-
out any need to measure or disturb this other particle. Einstein,
Podolsky, and Rosen contemplated two particles of opposite mo-
menta, released initially at one point. But, as remarked by Bohm,
the EPR paradox can equally well be stated in terms of two parti-
cles of spin % in a state of net spin zero, that is, in a state in which

_their spins are opposite. We will discuss_the EPR paradox in
terms of such a spin state, because this eases the mathematics and
because actual laboratory trials of the experiment have made use
of spin states.

Consider two particles of spin %, such as two protons or two
neutrons, in a state of net spin zero. Suppose that the particles are
initially close together, but then they move apart to a large dis-
tance, while they remain in the original state of net spin zero.
Once they are widely separated, we measure the spin of one of
these particles. Since the net spin is zero, the measurement of the
spin of the first particle immediately allows us to infer the spin of
the other particle—it must always be opposite to the spin of the
first particle. For instance, if we measure the z component of the
spin of the first particle and find %/2, then we immediately know
that the z component of the spin of the second particle must be
—#/2. The crucial step in the argument of Einstein, Podolsky, and
Rosen is now this: Since our measurement did not touch this sec-
ond particle, its state before the measurement ought to be the same
as after, and therefore this particle ought to have had a well-de-
fined z component of spin even before we performed the measure-
ment. But we can now apply the same argument to a measurement
of the x component of the spin; if we repeat the experiment and
measure the x component instead of the z component, then our
argument leads us the conclusion that the second particle ought to
have had a well-defined x component of the spin before the mea-
surement. And we can apply the same argument to the y compo-
nent, and conclude that the second particle ought to have had a
well-defined y component of the spin before the measurement.
Thus, all of the components of the spin of the second particle
ought to be well defined, in contradiction to quantum mechanics,
which asserts that if one component is well defined, then the
others are indeterminate. Accordingly, Einstein, Podolsky, and

‘Rosen claimed that the quantum-mechanical description provided

by the state vector cannot be complete. In their view, the state
vector must be supplemented or replaced by some extra “hidden
variables,” and the spin components must be expressed as func-
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tions of these hidden variables, so all the spin components are
simultaneously well defined.

Note that the crucial step in the EPR argument hinges on the
reality of the attributes of the particles and on the locality of the
measurement procedure. The spin of the second particle is sup-
posed to exist, in itself, even if we do not measure it; and the
measurement performed on the first particle is supposed to pro-
duce no effect on the second, distant, particle. Quantum mechan-
ics refutes this paradox by denying both of these suppositions.
The Copenhagen interpretation tells us that the particles do not
have attributes in themselves, but only in relation to a measure-
ment procedure. Furthermore, it tells us that a measurement per-
formed on one portion of a wavefunction, at one place, affects the
entire wavefunction, even its very distant portions.

According to quantum mechanics, the state vectors of the two
particles are so intimately intertwined that it makes no sense to
speak of the state vector of each individual particle, and it makes

no sense to speak of a real value of spin of each. We can see this -

from the expression for the eigenstate of net spin zero (s =0,
mg = 0) formed from the two states of spin one-half:

— L vy oy ey
|0>0>—\/§(|+>| )= =) 1+) (18)

Here, the first bra in each term indicates the spin state of the first
particle, and the second bra that of the second [see Eq. (9.95)].
For each individual particle, this state |0,0) is neither an eigenstate
of the individual z component of spin, nor even a simple superpo-
sition of the eigenstates |[+) and |—). There is no definite state
vector for the individual particles—only a joint state vector for the
system. Thus, it is not surprising that a measurement of the spin of
one particle affects the other particle. The measurement of the
spin of one particle changes the whole state.

We cannot measure one portion of the quantum-mechanical
wavefunction and leave the rest undisturbed. When we measure
any portion of the wavefunction, the whole wavefunction col-
lapses. The strange simultaneous collapse of the spin states of
both particles in the EPR Gedankenexperiment is no more remark-
able than the simultaneous collapse of all parts of the wavefunc-
tion of a single particle. When we place a detector in one part of
such a single-particle wavefunction, and we find (or do not find)
the particle in the volume of the detector, this affects the entire
wavefunction throughout space. The spin state vectors of the two
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partigles are just as intertwined as the portions of the wavefunction
qf a single particle. The system of the two spinning particles has a
single wavefunction, which happens to depend on two variables.

- The wavefunction cannot be regarded as consisting of separate,

disjoint pieces. Our intuitive expectation that we can measure one
portion of a wavefunction without disturbing its distant portions is
brought about by an overemphasis on the position representa-
tion. Excessive reliance on this representation misleads us into
expecting analogies between the behavior of the guantum-me-
chanical wavefunctions and classical wavefunctions. If we use the
abstract state vector, we find it easier to resist this temptation.
Note that the simultaneous collapse of the spin states of the
two particles cannot be used to transmit signals from one location
to the other. If the measurement of the spin of one of the particles

-reveals it to be in the state |+), then the other particle collapses

into the state |—); but an observer who then measures the spin of
this second particle and finds it to be |[—) has no way of knowing
that this result was enforced by the previous measurement at the
other location—he will only know this after he has received a
telegram or a letter from the other location informing him of the
previous result.

Although quantum mechanics gives a perfectly logical answer
to the EPR paradox, it does not give an answer that satisfies our
intuition. The EPR paradox shows that the weirdness of quantum
mechanics can be found even in systems involving macroscopic

‘distances. The two spinning particles are separated by a large

distance, and they do not interact—nevertheless, they form a sin-
gle, mathematically inseparable system. Quantum mechanics asks
us to ignore our intuition and to accept the weird intertwined
nonlocal behavior of the particles in this Gedankenexperiment. ’

12.5 Bell’s Theorem

In hidden-variable theories, the unpredictable results for a se-
quence of repeated measurements are attributed to our lack of
knowledge of the values of the hidden variables. The average
value obtained in a sequence of measurements is taken to equal an
average over the unknown (and unknowable?) values of the hid-
den variables; thus, the average value obtained in a measurement
is taken to equal an ensemble average. Of course, the hidden vari-
ables and the ensemble used in the averaging are chosen so as to
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obtain agreement with the expectation ‘values calculated from
quantum mechanics. Einstein and other physicists who favored
hidden variables took it for granted that the predictions of quan-
tum mechanics can always be duplicated by adopting some suffi-
ciently large set of hidden variables with a sufficiently compli-
cated ensemble distribution. However, in 1964, Bell!® demon-
strated that not all of the subtleties of the probabilistic predictions
of quantum mechanics can be duplicated by hidden variables. He
demonstrated that the correlations among spin measurements on
two particles of spin one-half in a state of zero net spin cannot be
duplicated by local hidden variables. : .
Consider a sequence of measurements of the components of
the spins of the two particles along two different directions. The
component of the spin of particle 1 is measured along the direction
of the unit vector a, and the component of the spin of particle 2 is
- measured along the direction of the unit vector b. The results of
these measurements are S,; and Syg, respectively, where the spin
components S,; and Syy take the usual values *=3%. If the direc-
tions a and b are the same, measurements on the quantum-me-
chanical spin state exhibit a perfect correlation, or rather, a perfect
anticorrelation: whenever the measurement of the spin of one of
the particles yields the value S,; = 3%, the measurement of the spin
of the other particle yields the opposite value S,o = —3%.
However, if the directions a and b are not the same, then the
anticorrelation of the paired spin measurements will not be per-
fect. In general, we can characterize the amount of correlation
observed in a sequence of a large number of repeated measure-
ments by a correlation coefficient, defined as the average value of
the product (4/%2)S,1Sps: v

C(a, b) =' [4

PP Salsbz]a (19)

Note that for each paired spin measurement, the value of
(4/#2)S 1Sz is either +1 or —1; hence, the correlation coefficient is
‘the average of a sequence of +1’s and ~1’s, and necessarily falls
within the range —1 =< C(a, b) =< +1, If for each paired spin mea-
surement in our sequence, the observed values of Sa1 and Sy are
exactly opposite, then the correlation coefficient will be
C(a, b) = —1; this characterizes a perfect anticorrelation. If for

19 7. 8. Bell, Physics, 1, 195 (1964).
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ed from each paired spin measurement, the observed values of Sa1 and Spy o
favored : are equal, then the correlation coefficient will be ¢ (a,b)=+1,a s
»f quan- perfect correlation. If some pairs of measurements yield opposite g ﬁ' i
ne suffi- spins and some pairs equal spins, then the correlation coefficient A
compli- will fall between the extreme values +1 and —1. : o ‘
demon- The average in Eq. (19) has been indicated with a square o]
dictions bracket to emphasize that itis calculated directly from the experi- i
les. He mental data. Thus, thig definition of the correlation coefficient He
ents on does not hinge on any particular theory of the spin. But, of course, vl }
nnot be any theory of spin will make g prediction for the value of the Lo
correlation coefficient. In quantum mechanics, the average N
nents of [(4/ﬁ2)Sale2]av

over the experimental data for 4 long sequence of
ns. The repeated measurements is predicted to equal the expectation
irection value ((4/%2)8 41 Sps). By evaluating this expectation value in the
icle 2 is quantum-mechanical state of net spin zero, we can show that the e

ssults of correlation coefficient is | ; ;
he spin B 4 i g |
e direc- C(a, b) = <<7;i—> Salsh2> = —cos 0 (20) N ’
um-me- |
perfect where 6 is the angle between the directions of a and b. Note that
f one of ' for 0 = 0, this vields C(a, b) = —1, as expected. And for g = 90° it J
he spin vields C(a, b) = 0. This is also expected, since the second spin is !
T always opposite the first, and therefore has equal probabilities for ’
hen the ‘ ’ the two possible eigenstates (Spy = +4#) of spin at right angles; i
be per-

consequently, there is no correlation between Sps and Sa1.

I’
-elation For a derivation of the formula (20), let us assume that a is ' dl
easure- along the +z direction and that b is in the z-x plane, at an angle ¢ ‘
ralue of with the z axis. The spinor for the zero-spin state is F J
" 1 | i
—=([+) =) = |=) |+ ‘
75 () =) = 1) [+) (21)
(19) , The correlation coefficient is the expectation value of (4/%%)S 1 Spo |
in this state: j i |
ue of 1 _ . o
cient is V ‘ 1 e (i ) R :
n mea- : ' 5 |
‘.91112 ege : v =2 (H] Sar [+) (= Spa [ =) = (+] Sy [=) (=] Spa |+) : ' ‘
It for TS ) (82 [=) 4+ (=] St =) (4] Sug [ 4)) (22)

Here, the second and the third terms are zero, since (+] S
0. In the first and fourth terms, the expectation values o

A=) = N
fS,; are G B
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easy to evaluate: (+| S, [+) = #/2 and (—| S,1 |-) = —#/2. How-
ever, the expectation values of Sy are more difficult, since |.+) a‘md
|—) are not eigenstates of Spy, but of S,9. To get around this diffi-
culty, we use the vector properties of the spin operator S and
express Spo as a superposition of S, and S,9:

Spo = Szo cos 0 + S,o sin 6 (23)
This equation is merely the standard formula for the transforma-
tion of the z component of a vector when the z axis is rotated by an
angle 6 toward the x axis. Thus, the expectation values of Spy in
the first and fourth terms of Eq. (22) are
. .k
(+] Sz [+) = (+| Sz2 | +) cos 0 + (+]| Szo |[+) sin 6 = 5cos 6+ 0 (24)

and

) fi
(=] Sb2|=) =(~| Sz2|=) cos 6 + (| Spo |~) sin @ = — 5 cos 6 +0

(25)
Combining these results, we find
C(a, b) :,% (— 7 08 6 — 1 o8 0) = —cps 0

This establishes the validity of the formula (20).

Bell examined the correlation coefficients for measurements
of the spih components along three (or more) different directio‘ns.
He proved that in any local hidden-variable theory the correlat1.0n
coefficients are restricted by an inequality, and that this inequality
is not satisfied by the correlation coefficient predicted by quantum
mechanics.

Consider three different directions specified by the unit vec-
tors a, b, and ¢, and suppose that we perform paired measurements
of the spin components of the two particles along these directions,
taking two directions at a time. We begin with a sequence of
paired measurements along the directions a (for particle 1) al_ad b
(for particle 2); then a sequence of measurements along the direc-
tions a and ¢; and finally, a sequence of measurements along the
directions b and c¢. The correlation coefficients for these se-
quences of measurements are C(a, b), C(a, ¢), and C(b, ¢), respec-
tively. According to hidden-variable theory, the predicted values

of these correlation coefficients are ensemble averages over the
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hidden variables, with some distribution function (weight func-
tion). The number and the kind of hidden variables and the shape
of the distribution function depend on the details of the hidden-
variable theory. But Bell proved that in any local hidden-variable
theory, the correlation coefficients necessarily obey the inequality

IC(a, b) — C(a, )] — C(b, ¢) = 1 (26)

This result, known as Bell’s theorem, is independent of the details
of hidden-variable theory; it makes no difference how many hid-
den variables the theory contains, and how their probability distri-
butions are contrived. '

For a proof of the theorem, it is convenient to start with an
examination of the quantity

i 4 4
g=- o Sa1Sb1 (1 ~ 3 Sblscl) 27)

which, as we will see, is closely related to the correlation coeffi-
cients. In a local hidden-variable theory, a measurement at one
place does not affect what happens at another, distant, place; and it
follows from this, by the EPR argument, that each particle has
well-defined simultaneous spin components. Thus, in such a the-
ory (but not in quantum mechanics) the components of the spin
along all three directions a, b, and ¢ are well defined, although
they are not necessarily known to us, and they are likely to be
different for each repetition of the measurement, because the val-
ues of the hidden variables are likely to be different. But for the
purposes of Bell’s theorem, it suffices that, for each particle 1 in
our sequence of repeated measurements, the quantity g has some
well-defined value.
Since (Sp1)? = #%/4, we can rewrite g as.

4

~ 22 (Sa18p1 — Sa1Se1) (28)

g =

We can relate this expression to the correlation coefficients by

taking into account that, in the configuration of net spin zero for

the two particles, their spins must be opposite, and hence their

spin components along any direction must also be opposite:
Sb1 = —She

Se1 = —Seo
Substituting these equations into Eq. (28), we obtain

(29)
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4
g = };E (Salsbz - SaISCZ) (30)
From this we see that the ensemble-average value of g is
[gley = C(a, b) — C(a, ¢) (31)

Next, we examine the absolute value of [g],,. Since the absolute
value of the average of g is less than or equal to the average of the
absolute value of g, and since |S,;Sps| = #2/4, Eq. (27) leads to

]

4 ; 4
Sa1Sp1 (1 Y Sb15c1>

llglavl = [lg|lav =[

72
4
=[G susa)],
=1+ [% Sblscz]av (32)

But thé second term on the right side of the last equation is C(b, ¢),
and thus '

S lgla] = 1+ Cb,

Combining this with Eq. (31), we immediately obtain the inequal-
ity (26) for the correlation coefficients.

The inequality (26), called Bell’s inequality, is obeyed by
every local hidden-variable theory. But this inequality is not
obeyed by quantum mechanics. For the sake of simplicity, let us
consider the special case with a, b, and ¢ in the same plane, say the
z-x plane, and with a along the +z axis, b at an angle of  with
respect to the +z axis, and ¢ at an angle of 26 with respect to the +z
axis. The quantum-mechanical correlation coefficients are then
[see Eq. (20)]

C(a,b) = —cos 0
C(a, ¢) = —cos 26
C(b, ¢) = —cos 6

Thus, the quantum-mechanical expression for the left side of
Bell’s inequality is

|C(a, b) — C(a, ¢)] — C(b, ¢) = |~ cos 8 + cos 26| + cos 6
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Fig. 12.3 Plot of |—cos 6 + cos 26| + cos 8 vs. 6. The dashed line is the
upper limit set by Bell’s inequality,

Figure 12.3 shows a plot of this expression as a function of . We
see that in the interval 0 < § < /2, the quantum-mechanical
result exceeds the limit set by Bell’s inequality. Thus, the quan-
tum-mechanical result is inconsistent with all local hidden-vari-
able theories. '

Bell’s inequality provides us with a way to discriminate exper-

imentally between the predictions of quantum mechanics and .

those of local hidden-variable theories. Before Bell’s theorem,
such a discrimination was thought to be nearly impossible, since
hidden-variable theories are designed to mimic the results of
quantum mechanics as best they can. After Bell’s theorem, several
experiments were performed to test the quantum-mechanical pre-
diction for correlation coefficients vs. the hidden-variable predic-
tion. Most of these experiments studied the correlations of the
polarizations of paired photons of net spin zero emitted by an
atom. Inequalities similar to the Bell inequality (26) can be de-
rived for the correlations of the polarizations of such photons. The
inequalities tested in these experiments actually were generalized

‘Bell inequalities, that make allowances for the less-than-perfect

counting efficiencies of the photon polarizers and detectors, and
for the experimental errors introduced by the apparatus. One
weakness of the original Bell inequality is that, like the EPR argu-
ment, it relies on an ideal apparatus capable of measuring a spin
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component with absolute precision—we can use the relation
Sa2 = —8Sa1 to find the spin of the second particle from a measure-
ment performed on the first particle only if the first measurement
is absolutely precise. The generalized Bell inequalities do not
make such extreme demands of the apparatus.

The pairs photons used in experimental tests of Bell’s inequal-
ity are emitted in a cascade process, in which an atom quickly
makes two successive transitions from an upper state of angular
momentum j = 0, to an intermediate state of j = 1, and finally to a
lower state of j = 0. Since the initial and the final states have
angular momenta zero, the net angular momentum carried away by
the two photons emitted in these two transitions must be zero, and
their polarizations are therefore perfectly correlated, like the spins
of the two particles we considered above.2® Experiments have
also been performed with pairs of protons obtained by proton—
proton scattering at low energies. From our discussion of partial
waves in scattering (see Section 11.5), we know that when a low-
energy proton is incident on a target proton, most of the scattering
is contributed by the partial wave of zero orbital angular momen-
tum. This means the protons are in a symmetric orbital state, and
the Pauli exclusion principle demands that they must then be in an
antisymmetric spin state, that is, a state of net spin zero.

~~With one exception; attributed to systematic experimental er-
rors, all these experiments found correlations that agreed with the
predictions of quantum mechanics and that exceeded the upper
limit demanded by Bell’s inequality. In the best of these experi-
ments, by A. Aspect and his associates at the Institut d’Optique
d’Orsay,?! the experimental results exceeded the Bell inequality
by more than 40 standard deviations. These experimental results

_conclusively rule out local hidden-variable theories. Thus, nature

tells us that the weird nonlocal character of quantum mechanics
brought out in the EPR paradox must be accepted. This does not

“necessarily mean that we have to accept quantum mechanics. We

could still think of contriving a nonlocal hidden-variable theory,

20 The polarization of a photon is in direct correspondence to its spin state.
The two states of circular polarization correspond to spin parallel and spin antipar-
allel to the momentum of the photon. The two states of plane polarization corre-
spond to superpositions of these spin states.

2l For areview of recent experimental results, see the article by A. Aspect and
P. Grangier in Quantum Concepts in Space and Time, edited by R. Penrose and
C.J.Isham. Fora comprehensive review of earlier experiments, see J. F. Clauser
and A. Shimony, Rep. Prog. Phys., 41, 1881 (1978).
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even though such a theory would be somewhat pointless, since,
according to the EPR argument, the main rationale for a hidden-
variable theory is the attainment of locality.

In a nonlocal theory, a measurement at one place can affect a
measurement at another place. In such a theory, some hidden
variables might generate a (nonlocal) influence between the detec-
tors, so the orientation of the axis of polarization of detector 1 alters
the behavior of detector 2, in such a way that the measured correla-
tions match those predicted by quantum mechanics. However, a
modification of the two-photon correlation experiment by Aspect
established that if this influence exists, it must propagate from one
detector to the other at a speed exceeding the speed of light. In
the modified experiment, the polarizations of the detectors were
independently switched from one direction to another in a time
shorter than the light travel time between detectors. The experi-
mental results were, again, in agreement with quantum mechan-
ics, and in disagreement with Bell’s inequality. This establishes
that any nonlocal influence exerted by one detector on the other
would have to proceed via superluminal action-at-a-distance. Fur-
thermore, this action-at-a-distance would have to be contrived in
such a way that an experimenter can never use it to send deliber-
ate signals, which would violate causality. These features of a
nonlocal hidden-variable theory would be even more weird than
the features of quantum mechanics.

PROBLEMS 1. In one attempt at finding a counterexample to the energy—time uncer-

tainty relation, Einstein proposed that a closed box full of radiation be
equipped with a shutter operated by a clock (see F ig. 12.4). The box is

- first weighed precisely with a spring balance, then the clock opens the
shutter for an interval At and releases a photon, and then the box is
again weighed precisely. This would seem to permit a precise deter-
mination of the energy of the photon (AE = 0), in contradiction with
the uncertainty relation AE At = #/2. Bohr refuted this counterexam-
ple by noting that the vertical uncertainty in the position of the box
during the weighing leads to an uncertainty in the rate of the clock, via
the gravitational time-dilation effect of Einstein’s theory of general
relativity. A simpler refutation can be constructed by taking into ac-
count that the clock and the shutter are a quantum system, which is
subject to the energy—time uncertainty relation.

(a) Prove that the clock and shutter cannot be in an energy eigen-
state. (Hint: Consider that the hands of the clock and the shutter
have time-dependent positions.)






