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CHAPTER 1

REVIEW OF CONCEPTS
OF CLASSICAL MECHANICS

1.1 Generalized or ** Good™ Coordinates

1.2 Energy, the Hamiltonian, and Angular Momentum
1.3 The State of a System

1.4 Properties of the One-Dimensional Potential Function

This is a preparatory chapter in which we review fundamental concepts of classical
mechanics important to the development and understanding of quantum mechanics.
Hamilton’s equations are introduced and the relevance of cyclic coordinates and con-
stants of the motion is noted. In discussing the state of a system, we briefly encounter our
first distinction between classical and quantum descriptions. The notions of forbidden
domains and turning points relevant to classical motion, whichfind application in quantum
mechanics as well, are also described. The experimental motivation and historical back-
ground of quantum mechanics are described in Chapter 2.

1.1 GENERALIZED OR “GOOD” COORDINATES

Our discussion begins with the concept of generalized or good coordinates.

A bead (idealized to a point particle) constrained to move on a straight rigid
wire has one degree of freedom (Fig. 1.1). This means that only one variable (or
parameter) is needed to uniquely specify the location of the bead in space. For the
problem under discussion, the variable may be displacement from an arbitrary but
specified origin along the wire.
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FIGURE 1.1 A bead constrained to move on
a straight wire has one degree of freedom.

A particle constrained to move on a flat plane has two degrees of freedom. Two
independent variables suffice to uniquely determine the location of the particle in
space. With respect to an arbitrary, but specified origin in the plane, such variables
might be the Cartesian coordinates (x, y) or the polar coordinates (r, 6) of the particle
(Fig. 1.2).

Two beads constrained to move on the same straight rigid wire have two degrees
of freedom. A set of appropriate coordinates are the displacements of the individual

particles (x,, x,) (Fig. 1.3).

y y
o (xy) r
0 o
x FIGURE 1.2 A particle constrained to
move in a plane has two degrees of freedom.
(a) (b) Examples of coordinates are (x, y) or (r, ).

FIGURE 1.3 Two beads on a wire have two
degrees of freedom. The coordinates x, and x,
denote displacements of particles 1 and 2,
respectively.

Rl
]

FIGURE 1.4 A rigid dumbbell in a plane has three degrees of free-
X dom. A good set of coordinates are: (x, y), the location of the center,
and 6, the inclination of the rod with the horizontal.
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A rigid rod (or dumbbell) constrained to move in a plane has three degrees of
freedom. Appropriate coordinates are: the location of its center (x, y) and the angular
displacement of the rod from the horizontal, § (Fig. 1.4).

Independent coordinates that serve to uniquely determine the orientation and
location of a system in physical space are called generalized or canonical or good
coordinates. A system with N generalized coordinates has N degrees of freedom. The
orientation and location of a system with, say, three degrees of freedom are not
specified until all three generalized coordinates are specified. The fact that good
coordinates may be specified independently of one another means that given the
values of all but one of the coordinates, the last coordinate remains arbitrary. Having
specified (x, y) for a point particle in 3-space, one is still free to choose z independently
of the assigned values of x and y.

PROBLEMS

L1 For each of the following systems, specify the number of degrees of freedom and a set of good
coordinates.

(a) A bead constrained to move on a closed circular hoop that is fixed in space.

(b) A bead constrained to move on a helix of constant pitch and constant radius.

(c) A particle on a right circular cylinder.

(d) A pair of scissors on a plane.

(e) A rigid rod in 3-space.

(f) A rigid cross in 3-space.

(g) A linear spring in 3-space.

(h) Any rigid body with one point fixed.

(1) A hydrogen atom.

(j) A lithium atom.

(k) A compound pendulum (two pendulums attached end to end).

1.2 Show that a particle constrained to move on a curve of any shape has one degree of freedom.

Answer
A curve is a one-dimensional locus and may be generated by the parameterized equations
x=x(m), y=yn), z=2z0n

Once the independent variable 7 (e.g., length along the curve) is given, x, y, and z are specified.
1.3 Show that a particle constrained to move on a surface of arbitrary shape has two degrees
of freedom.

Answer

A surface is a two-dimensional locus. It is generated by the equation

ux.y.2)=0
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Any two of the three variables x, y, z determine the third. For instance, we may solve for z in the
equation above to obtain the more familiar equation for a surface (height z at the point x, y),

z = 2(x, y)

In this case. x and y may serve as generalized coordinates.
1.4 How many degrees of freedom does a classical gas composed of 10?2 point particles have?

1.2 ENERGY, THE HAMILTONIAN, AND ANGULAR MOMENTUM

These three elements of classical mechanics have been singled out because they have
direct counterparts in quantum mechanics. Furthermore, as in classical mechanics,
their role in quantum mechanics is very important.

Consider that a particle of mass m in the potential field V(x, y, z) moves on the
trajectory

x = x(t)
(1.1) y = yt)
z = z(t)

At any instant ¢, the energy of the particle is
(1.2) E = tmo® + V(x, 3 2) = m(x* + y* + 2%) + V(x, 3, 2)

The velocity of the particle is v. Dots denote time derivatives. The force on the particle
F is the negative gradient of the potential.

1, 0 0
(1.3) F=—VV——(ex5;V+ey5;V+e,a—zV)

The three unit vectors (e,, €,, €,) lie along the three Cartesian axes.
Here are two examples of potential. The energy of a particle in the gravitational
force field,

F = —emg= —Vmgz
is
(14) = im(x* + y* + %) + mgz
The particle is at the height z above sea level. For this example,
V =mgz
An electron of charge g and mass m, between capacitor plates that are maintained
at the potential difference ®, and separated by the distance d (Fig. 1.5), has potential
g%

V=TZ



ENERGY., THE HAMILTONIAN, AND ANGULAR MOMENTUM 7

qe

FIGURE 1.5 Electron in a uniform capacitor field.

The displacement of the electron from the bottom plate is z. The electron’s energy is
®
(1.5) E=1m(x + j? + %) + %—0 2

In both examples above, the system (particle) has three degrees of freedom. The
Cartesian coordinates (x, y, z) of the particle are by no means the only “good”
coordinates for these cases. For instance, in the last example, we may express the
energy of the electron in spherical coordinates (Fig. 1.6):

R . ()
(1.6) E = Im(i* + r?6* + r?¢? sin? 0) + q—d—orcos 0

In cylindrical coordinates (Fig. 1.7) the energy is

. ®
(1.7) E=in(p? + p?¢* + 29 + L2

Ve .
7 Capacitor plate

(a) (b)
FIGURE 1.6 Spherical coordinates.
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(p,2,9)

y=psing

\%
AN

Capacitor plate
(a) (b)

FIGURE 1.7 Cylindrical coordinates.

The hydrogen atom has six degrees of freedom. If (x,, y,, z,) are the coordinates
of the proton and (x,, y,, z,) are the coordinates of the electron, the energy of the

hydrogen atom appears as
(1.8) E =M@, 2 + 3.7 + £,2) + dm(X,2 + 9,7 + 257)

q2

\/(xx —x) + (=Y + (e — z,)?
(Fig. 1.8). The mass of the proton is M and that of the electron is m. In all the cases

above, the energy is a constant of the motion. A constant of the motion is a dynamical
function that is constant as the system unfolds in time. For each of these cases,

(x5, ¥2, 23)
M

(Xl,)’l,zl)

\/(xl— xR+ (y, —y)? + (2 —z,)?

Y

FIGURE 1.8 The hydrogen atom has

six degrees of freedom. The Cartesian

coordinates of the proton and electron
X serve as good generalized coordinates.
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b L=rxp

Particle’s
orbit

FIGURE 1.9 Angular momen-
tum of a particle with momentum p
about the origin O.

whatever E is initially, it maintains that value, no matter how complicated the sub-
sequent motion is. Constants of the motion are extremely useful in classical mechanics
and often serve to facilitate calculation of the trajectory.

A system that in no way interacts with any other object in the universe is called
an isolated system. The total energy, linear momentum, and angular momentum of an
isolated system are constant. Let us recall the definition of linear and angular momen-
tum for a particle. A particle of mass m moving with velocity v has linear momentum

(1.9) p = my
The angular momentum of this particle, measured about a specific origin, is
(1.10) L=rxp

where r is the radius vector from the origin to the particle (Fig. 1.9).

If there is no component of force on a particle in a given (constant) direction,
the component of momentum in that direction is constant. For example, for a par-
ticle in a gravitational field that is in the z direction, p, and p, are constant.

If there is no component of torque N in a given direction, the component of
angular momentum in that direction is constant. This follows directly from Newton’s
second law for angular momentum,

_dL

(1.11) ==

For a particle in a gravitational field that is in the minus z direction, the torque on the
particle is

N=rxF=—-rxemy
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FIGURE 1.10 The torque r x F has no com-
X ponent in the z direction.

The radius vector from the origin to the particle is r (Fig. 1.10). Since €, x r has no
component in the z direction (e, * e, x r = 0), it follows that

(1.12) L, = xp, — ypx = constant

Since p, and p, are also constants, this equation tells us that the projected orbit in the
xy plane is a straight line (Fig. 1.11).

Ly

=—e,mg

\'

FIGURE 1.11 The projected motion in the xy plane is a straight
line. Its equation is given by the constant z component of angular
momentum: L, = xp, — yp,.



Hamilton’s Equations

The constants of motion for more complicated systems are not so easily found.
However, there is a formalism that treats this problem directly. It is Hamiltonian
mechanics. Consider the energy expression for an electron between capacitor plates
(1.5). Rewriting this expression in terms of the linear momentum p (as opposed to
velocity) gives

Coa 1 )
(113) E(X, V> 2, X5 )y Z) - H(X, Vs 2y Pxs Py pz) = ﬂ (pxz + pyz + pzz) + % z

The energy, written in this manner, as a function of coordinates and momenta is
called the Hamiltonian, H. One speaks of p, as being the momentum conjugate to
X; p, is the momentum conjugate to y; and so on.

The equations of motion (i.e., the equations that replace Newton’s second law)
in Hamiltonian theory are (for a point particle moving in three-dimensional space)

GH . oH
ax P g T
0H ) 0H
(1.14) E 6_py_y
H_ . oH_
5z P dp,

Cyclic Coordinates

For the Hamiltonian (1.13) corresponding to an electron between capacitor plates,
one obtains

0H GH
dx 0y

(1.15)

The Hamiltonian does not contain x or y. When coordinates are missing from
the Hamiltonian, they are called cyclic or ignorable. The momentum conjugate to a
cyclic coordinate is a constant of the motion. This important property follows
directly from Hamilton’s equations, (1.14). For example, for the case at hand, we see
that 0H/0x = 0 implies that p, = 0, so p, is constant; similarly for py. (Note that
there is no component of force in the x or y directions.) The remaining four Hamilton’s
equations give

(1.16) b.=——, px=mX, p,=my, p,=m:

11
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P r
Y
¢
FIGURE 1.12 Motion of a particle in spherical co-
ordinates with r and ¢ fixed: vy, = rf, py = rmv, =
x mpr? 6. The moment arm is r.

The last three equations return the definitions of momenta in terms of velocities.
The first equation is the z component of Newton’s second law. (For an electron,
q = —|q|. Itis attracted to the positive plate.)

Consider next the Hamiltonian for this same electron but expressed in terms of
spherical coordinates. We must transform E as given by (1.5) to an expression involv-
ingr, 6, ¢, and the momenta conjugate to these coordinates. The momentum conjugate
to r is the component of linear momentum in the direction of r. I ¢, is a unit vector in

the r direction, then
(1.17) p="P e p=me v=m

The momentum conjugate to the angular displacement 6 is the component of angular
momentum corresponding to a displacement in 6 (with r and ¢ fixed). The moment
arm for this motion is r. The velocity is r. It follows that

(1.18) pe = mr(rf) = mr6

(Fig. 1.12).

The momentum conjugate to ¢ is the angular momentum corresponding to a
displacement in ¢ (with r and 6 fixed). The moment arm for this motion is r sin 6. The
velocity is r¢ sin 6 (Fig. 1.13). The angular momentum of this motion is

(1.19) py = mrd sin?6

Since such motion is confined to a plane normal to the z axis, py is the z component
of angular momentum. This was previously denoted as L, in (1.12).
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z 'y
\\ —]
8 r
+ —
5 y
s &
FIGURE 1.13 Motion of a particle
with r and @ fixed: v, = rsin 6 ¢.
The moment arm is rsinf, p, =
x (rsin B)ymv, = mr* ¢ sin? 4.

In terms of these coordinates and momenta, the energy expression (1.6) becomes

2 2 2

8 Pe Ps gD,
1- [ 6, s Frs B =S . 7 6
(1.20) H(r 6,9, p> po- po) 2m + 2mr? + 2mr? sin? @ + a "o

Hamilton’s equations for a point particle, in spherical coordinates, become

oH . 0H _,4
F O P
oH . oH

1.21 — = - il
( ) o0 Dy Ope

oH . oH _

P Op,_r

From the form of the Hamiltonian (1.20) we see that ¢ is a cyclic coordinate. That is,
0H
o
It follows that p,, as given by (1.19), is constant. Thus, the component of angular

momentum in the z direction is conserved. The torque on the particle has no com-
ponent in this direction.

(1.22) 0= —-p,
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Again the momentum derivatives of H in (1.20) return the definitions of momenta
in terms of velocities. For example, from (1.20),

OH _ 4 _ P

Ope mr?

(1.23)

which is (1.18). Hamilton’s equation for p, is

0H . po’ Py’ qP,
(124) —a—r=p,=m+’—nr3—;n—5—6——d-cos(9
The first two terms on the right-hand side of this equation are the components of
centripetal force in the radial direction, due to 6 and ¢ displacements, respectively.
The last term is the component of electric force —e,q®,/d in the radial direction.
Hamilton’s equation for p, is

o0H Zcos 6 @, .

(1.25) —a—6=pg=%—6+q—d9rsm0
The right-hand side is a component of torque. It contains the centripetal force factor
due to the ¢ motion (p,%/mr®sin® 6) and a moment arm factor, r cos 6. At any
instant of time this component of torque is normal to the plane swept out by r due to
8 motion alone.

A very instructive example concerns the motion of a free particle. A free particle
is one that does not interact with any other particle or field. It is free of all interactions
and is an isolated system. A particle moving by itself in an otherwise empty universe is
a free particle. In Cartesian coordinates the Hamiltonian for a free particle is

1 1
L. H=—p*=—(2+p°+0p°
(1.26) P = om (p<* + py" + p:%)

All coordinates (x, y, z) are cyclic. Therefore, the three components of momenta are
constant and may be equated to their respective initial values at time ¢ = 0.

px = px(0)
(1.27) py = py(0)
p, = p.(0)

Combining these with the remaining three Hamilton’s equations gives

mx = p,(0)
(1.28) my = p,(0)
mz = p,(0)
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These are simply integrated to obtain

x0 =292 4 v
m

(1.29) vy = 2O, %0)
m

20 =9, 1 20
m

which are parametric equations for a straight line.
Let us calculate the y component of angular momentum of the (free) particle.

p:(0) px(0)

(1.30) L,=zp, — xp, = [2(0) +— t]px(O) = [X(O) + — t]pz(o)
m m

Canceling terms, we obtain

(1.31) L, = 2(0)p(0) — x(0)p.(0) = L,(0)
and similarly for L, and L,. It follows that

(1.32) L=(L,, L,, L,) = constant

for a free particle.

Investigating the dynamics of a free particle in Cartesian coordinates has given us
immediate and extensive results. We know that p and L are both constant. The orbit
1s rectilinear.

We may also, consider the dynamics of a free particle in spherical coordinates.
The Hamiltonian is

2 2

2
P Pe Py
33 H=—
(1.33) 2m + 2mr*  2mr?sin? 6

Only ¢ is cyclic, and we immediately conclude that pe (or equivalently, L,) is constant.
However, p, and p, are not constant. From Hamilton’s equations, we obtain

b = Pe’ Po’
" omr®  mrisin? @
(134)
. psicosf
P = T sind 6

These centripetal terms were interpreted above. In this manner we find that the recti-
linear, constant-velocity motion of a free particle, when cast in a spherical coordinate
frame, involves accelerations in the r and 6 components of motion. These accelerations
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arise from an inappropriate choice of coordinates. In simple language: Fitting a
straight line to spherical coordinates gives peculiar results.

A comparison of the Hamiltonian for a free particle in Cartesian, spherical, and
cylindrical coordinates is shown in Table 1.1.

Canonical Coordinates and Momenta

While the reader may feel some familiarity with the components of linear momen-
tum (p,, p,, p,) and angular momentum (p,, p,), it is clear that these intuitive notions
are exhausted for a system with, say, 17 degrees of freedom. If we call the seventeenth
coordinate ¢,;,, what is the momentum p,, conjugate to g,,? There is a formal
procedure for determining the momentum conjugate to a given generalized co-
ordinate. For example, it gives p, = mr’ as the momentum conjugate to 6 for
a particle in spherical coordinates. This procedure is described in any book in
graduate mechanics.!

The coordinates of a system with N degrees of freedom, (¢,, 45,45, . - -, qy), and
conjugate momenta (py, p,, p3, ..., py) are also called canonical coordinates and
momenta. A set of coordinates and momenta are canonical if with the Hamiltonian,
H(qy, ..., 45, P15 - - - Dn» t), Hamilton’s equations

oH .  6H

(1.35) = b

are entirely consistent with Newton’s laws of motion. We have seen this to be the case
for all the problems considered above. (Time-dependent Hamiltonians are con-
sidered in Chapter 13.)

PROBLEMS
1.5 Show that the z component of angular momentum for a point particle
L, = xp, — yp«
when expressed in spherical coordinates, becomes
L,=p, =mridsin? §
(Hint: Recall the transformation equations

z=rcosf
y = rsin8sin ¢

x = rsin 8 cos ¢.)

! See, for example. H. Goldstein. Classical Mechanics. Addison-Wesley. Reading, Mass., 1951,
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1.6 (a) Calculate p,, ps, and p, as explicit functions of time for the following motion of a
particle.

Y =DYo, Z =29, X = Vgt

(b) For what type of free-particle orbit are the following conditions obeyed?

1 p=0
(2) Pp=0
B) p=0

(4) Pr=Ps=Ps=0
(¢) Describe an experiment to measure p,, at a given instant, for the motion of part (a).
1.7 Show that the energy of a free particle may be written
B prl LZ

H=
2m  2mr?

where L = r x p. [Hint: Use the vector relation
L? = (r x p)* = r?p* — (r-p)

together with the definition p, = (r- p)/r.]
1.8 Show that angular momentum of a free particle obeys the relation
P¢2
12=L?4+L?4+L2=p2+ 2
IR A N
(Hint: Employ the results of Problem 1.7.)

1.9 A particle of mass m is in the environment of a force field with components
F,= —Kz, F,=0, F,=0

with K constant.
(a) Write down the Hamiltonian of the particle in Cartesian coordinates. What are the
constants of motion?
(b) Use the fact that the Hamiltonian itself is also constant to obtain the orbit.
(c) Whatis the Hamiltonian in cylindrical coordinates ? What are the constants of motion?
1.10 Suppose that one calculates the Hamiltonian for a given system and finds a coordinate
missing. What can be said about the symmetry of the system?

1.11 A particle of mass m is attracted to the origin by the force
F = —Kr

Write the Hamiltonian for this system in spherical and Cartesian coordinates. What are the
cyclic coordinates in each of these frames? [Hint: The potential for this force, V(r), is given by
F=—Kr= -VV(r).]

1.12 A “spherical pendulum” consists of a particle of mass m attached to one end of a weightless
rod of length a. The other end of the rod is fixed in space (the origin). The rod is free to rotate
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about this point. If at any instant the angular velocity of the particle about the origin is w, its energy

E=

— 1
——71(,0

'§|>..
Q
g

The moment of inertia is /. What is the Hamiltonian of this system in spherical coordinates?
(Hint: Recall the relation L = [w.)

1.3 THE STATE OF A SYSTEM

To know the values of the generalized coordinates of a system at a given instant is to
know the location and orientation of the system at that instant. In classical physics we
can ask for more information about the system at any given instant. We may ask for
its motion as well. The location, orientation, and motion of the system at a given
instant specify the state of the system at that instant. For a point particle in 3-space,
the classical state I is given by the six quantities (Fig. 1.14)

(1.36) I'=(x,y,2,%,2)
In terms of momenta,

(1.37) ['=(x,y 2 px, Dy P2)

More generally, the state of a system is a minimal aggregate of information about the
system which is maximally informative. A set of good coordinates and their corre-
sponding time derivatives (generalized velocities) or corresponding momenta (canoni-
cal momenta) always serves as such a minimal aggregate which is maximally infor-
mative and serves to specify the state of a system in classical physics.

The state of the system composed of two point particles moving in a plane is
given by the eight parameters

(138) r = (xl’ y13X2’ y2a pxp pyp Pxp pyz)

FIGURE 1.14 The classical state of a free particle is given by
x six scalar quantities (x, , z, p,, p,, p,)-
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Just as the set of generalized coordinates one assigns to a given system is not
unique, neither is the description of the state I'. For instance, the state of a point
particle moving in a plane in Cartesian representation is

(1.39) I'=(x,y prs, )
In polar representation it is
(140) I'= (r’ 63 Drs p@)

All representations of the state of a given system in classical mechanics contain
an equal number of variables. If we think of I as a vector, then for a system with N
degrees of freedom, I' is 2N-dimensional. In classical mechanics change of represen-
tation is effected by a change from one set of canonical coordinates and momenta
(g, p) to another valid set of canonical coordinates and momenta (q’, p’).

r(ql""ansplw"’pN)_)r(ql/’""QN/spl”""pN/)

One form of canonical transformation results simply from a change in coordinates.
For example, the transformation from Cartesian to polar coordinates for a particle
moving in a plane effects the following change in representation:

F(X, Y, Px» py) - r(r’ 6, Drs p@)

Representations in Quantum Mechanics

Next, we turn briefly to the form these concepts take in quantum mechanics. The
specification of parameters that determines the state of a system in quantum mechanics
is more subtle than in classical mechanics. As will emerge in the course of development
of this text, in quantum mechanics one is not free to simultaneously specify certain
sets of variables relating to a system. For example, while the classical state of a free
particle moving in the x direction is given by the values of its position x, and momen-
tum p,, in quantum mechanics such simultaneous specification cannot be made.
Thus, if the position x of the particle is measured at a given instant, the particle is left
in a state wherein the particle’s momentum is maximally uncertain. If on the other
hand the momentum p, is measured, the particle is left in a state in which its position
is maximally uncertain. Suppose it is known that the particle has a specific value of
momentum. One may then ask if there are any other variables whose values may be
ascertained without destroying the established value of momentum. For a free
particle one may further specify the energy E; that is, in quantum mechanics it is
possible for the particle to be in a state such that measurement of momentum definitely
finds the value p, and measurement of energy definitely finds the value E. Suppose
there are no further observable properties of the free particle that may be specified
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simultaneously with those two variables. Consequently, values of p, and E comprise
the most informative statement one can make about the particle and these values may
be taken to comprise the state of the system of the particle

I'=T(p,, E)

As remarked above, if the particle is in this state, it is certain that measurement of
momentum finds p, and measurement of energy finds E. Such values of p, and E are
sometimes called good quantum numbers. As with their classical counterpart, good
quantum numbers are an independent set of parameters which may be simultaneously
specified and which are maximally informative.

For some problems in quantum mechanics it will prove convenient to give the
state in terms of the Cartesian components of angular momentum: L., L, and L,.
We will find that specifying the value of L,, say, induces an uncertainty in the accom-
panying components of L, and L,, so that, for example, it is impossible to simul-
taneously specify L, and L, for a given system. One may, however, simultaneously
specify L, together with the square of the magnitude of the total momentum, L*. For
a particle moving in a spherically symmetric environment, one may also simul-
taneously specify the energy of the particle. This is the most informative' statement
one can make about such a particle, and the values of energy, L? and L,, comprise a
quantum state of the system.

(1.41) I=(EL*L,)

The values of E, L%, and L, are then good quantum numbers. That is, they are an
independent set of parameters which may be simultaneously specified and which are
maximally informative.

Just as change in representation, as discussed above, plays an important role in
classical physics, so does its counterpart in quantum mechanics. A representation in
quantum mechanics relates to the observables that one can precisely specify in a
given state. In transforming to a new representation, new observables are specified in
the state. For a free point particle moving in 3-space, in one representation the three
components of linear momentum p,, p,, and p, are specified while in another repre-
sentation the energy p?/2m, the square of the angular momentum L?, and any com-
ponent of angular momentum, say L,, are specified. In this change of representation,

(1.42) C(ps, pys p.) = T(E, L%, L)

When treating the problem of the angular momentum of two particles (L, and
L,, respectively) in one representation, (L,?, L,% L, L,,) are specified while in
another representation, (L,?, L,% L? L,) are specified. Here we are writing L for

! More precisely. I' inctudes the parity of the system. This is a purely quantum mechanical notion and will be discussed
more fully in Chapter 6
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the total angular momentum of the system L = L; + L,. In this change of represen-
tation,

(1.43) (L% L% L, L,y) — T(L, 2, Ly2, L2 L)

Finally, in this very brief introductory description, we turn to the concept of the
change of the quantum state in time. In classical mechanics, Newton’s laws of motion
determine the change of the state of the system in time. In quantum mechanics, the
evolution in time of the state of the system is incorporated in the wave (or state)
Junction and its equation of motion, the Schrédinger equation. Through the wave-
function, one may calculate (expected) values of observable properties of the system,
including the time development of the state of the system.

These concepts of the quantum state—its evolution in time and change in
representation—comprise principal themes in quantum mechanics. Their under-
standing and application are important and are fully developed later in the text.

PROBLEMS

1.13 Write down a set of variables that may be used to prescribe the classical state for each of
the 11 systems listed in Problem 1.1.

Answer (partial)
(e) Arigid rod in 3-space: Since the system has five degrees of freedom, the classical state
of the system is given by 10 parameters. For example,

F={xy2z69¢%y20, ¢

[Note: The quantum state is less informative. For example, such a state is prescribed by five
variables (x, y, z, 8, ¢). Another specification of the quantum state is given by five momenta
(Px+ Pys Pz Ps, o). However, simultaneous specification of, say, x and Px is not possible in quantum
mechanics.]
1.14 (a) Use Hamilton’s equations for a system with N degrees of freedom to show that H is
constant in time if H does not contain the time explicitly. [ Hinr : Write

dH 6H N (6H  0H .

w5 i)

{b) Construct a simple system for which H is an explicit function of the time.

1.15  For a system with N degrees of freedom, the Poisson bracket of two dynamical functions
A and B is defined as

{4, B) =
Z dq, op, 0q, dp,

=1

N <5A 0B OB 3A>
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(a) Use Hamilton’s equations to show that the total time rate of change of a dynamical
function 4 may be written

A _od
dt ot ’

where H is the Hamiltonian of the system.
(b) Prove the following: (1) If A(q, p) does not contain the time explicitly and {4, H} = 0,
then A is a constant of the motion. (2) If 4 does contain the time explicitly, it is constant if 84/t =

{H, A}.
(¢) For a free particle moving in one dimension, show that

t
A=x- 2
m
satisfies the equation
04
— = —{4,H
A {4, H}

so that it is a constant of the motion. What does this constant correspond to physically?

1.16 How many degrees of freedom does the compound pendulum depicted in Fig. 1.15 have?
Choose a set of generalized coordinates (be certain they are independent). What is the Hamiltonian
for this system in terms of the coordinates you have chosen? What are the immediate constants
of motion?

1.17 How many constants of the motion does a system with N degrees of freedom have?

Answer

Each of the coordinates {g;} and momenta {p,} satisfies a first-order differential equation in time
(i.e., Hamilton’s equations). Every such equation has one constant of integration. These comprise
2N constants of the motion.

F=-e,mg

FIGURE 1.15 Compound pendulum com-
posed of two masses connected by weight-
less rods of length a. The motion is in the
plane of the paper. (See Problem 1.16.)




1.4 PROPERTIES OF THE ONE-DIMENSIONAL
POTENTIAL FUNCTION

Consider a particle that is constrained to move in one dimension, x. The particle is in
the potential field V(x) depicted in Fig. 1.16. What is the direction of force at the point
x = A7 We can calculate the gradient (in the x direction) and conclude that the
direction of force at 4 is in the + x direction. There is a simpler technique. Imagine
that the curve drawn is the contour of a range of mountain peaks. If a ball is placed at
A, it rolls down the hill. The force is in the +x direction. If placed at B (or C), it
remains there. If placed at D, it rolls back toward the origin; the force is in the —x
direction. This technique always works (even for three-dimensional potential
surfaces) because the gravity potential is proportional to height z, so the potential
surface for a particle constrained to move on the surface of a mountain is that same
surface.

The one-dimensional spring potential, V = Kx?/2, is depicted in Fig. 1.17. If
the particle is started from rest at x = A, it oscillates back and forth in the potential
well between x = + 4 and x = — 4.

Motion described by a potential function is said to be conservative. For such
motion, the energy

(1.44) E=T+V
is constant. In terms of the kinetic energy T,

2
(1.45) T=%:E—V

Forbidden Domains

From (1.45) we see that if V > E, then T < 0 and the velocity becomes imaginary. In
classical physics, particles are excluded from such domains. They are called forbidden
regions. Again consider a one-dimensional problem with potential V(x) shown in
Fig. 1.18. The constant energy E is superimposed on this diagram. Segments 4B and

V(x) }

D X FIGURE 1.16 Arbitrary poten-
tial function.

n
&
ot
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PROPERTIES OF THE ONE-DIMENSIONAL POTENTIAL FUNCTION 25

R

FIGURE 1.17 Spring potential.

CD are forbidden regions. Points 4, B, C, and D are stationary or turning points.
Since E = V at these points, T = 0 and x = 0. Suppose that a particle is started from
rest from the point C. What is the subsequent motion? The particle is trapped in the
potential well between B and C. It accelerates down the hill, slows down in climbing
the middle peak, then slows down further in climbing to B, where it comes to rest and
turns around. This periodic motion continues without end.

Vix) 4

FIGURE 1.18 Forbidden domains at energy E.

The one-dimensional potential depicted in Fig. 1.18 can be effected by appro-
priately charging and spacing a linear array of plates with holes bored along the axis.
The potential depicted in Fig. 1.18 is seen by an electron constrained to move along

this (x) axis.

PROBLEMS
1.18 A particle constrained to move in one dimension (x) is in the potential field

Volx —a)(x — b)
(x —¢)?

Vix) = O<a<b<c< o)
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(a) Make a sketch of V.
(b) Discuss the possible motions, forbidden domains, and turning points. Specifically, if
the particle is known to be at x = — co with

k}%
E = Ob(b—4a+3c)

at which value of x does it reflect?
1.19 A particle of mass m moves in a “central potential,” V(r), where r denotes the radial dis-

placement of the particle from a fixed origin.
(a) Whatis the (vector)force on the particle? Recall here the components of the V operator

in spherical coordinates.
(b) Show that the angular momentum L of the particle about the origin is constant.

(Hint: Calculate the time derivative of L = r x p and recall that p = mt.)
(c) Show that the energy of the particle may be written

2 2

2m  2mr?

+ V(r)

(d) From Hamilton’s equations obtain a “one-dimensional” equation for p,, in the form

0
b= = = Vealr)

where V,; denotes an “effective” potential that is a function of r only.

(e) For the case of gravitational attraction between two masses (M, m), V = —GmM|/r,
where G is the gravitational constant. Make a sketch of V., versus r for this case. Use this sketch to
establish the conditions for circular motion (assume that M is fixed in space) for a given value of L2
1.20 Complex variables play an important role in quantum mechanics. The following two
problems are intended as a short review.

If

¥ = || exp (iay)
x = x| exp (ia;)

show that
I+ x12 = [¥1> + 1x* + 2[¥x] cos (&, — a,)

1.21 Use the expansion

e = cosf + isinf
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to derive the following relations.
(a) cos(B, + 6,) =cos B, cosf, —sin 6, sin 6,
(b) sin (6, + 0,) = cos 8, sinf, + sin b, cos ,
(¢) 2sinf, cos B, = sin (8, — 0,) + sin (8, + 60,)
(d) 2cosf, cosB, =cos (8, + 68,) + cos (8, — 0,)
(e) 2cos?f =1+ cos20
(f) 2sin®?6 =1 — cos 26
(g) € — 1 = 2" sin (6/2)
(h) 11 + €21 = L + eP2) (e + €92)* = | + cos (8, — 6,)



CHAPTER 3

THE POSTULATES OF
QUANTUM MECHANICS. OPERATORS,
EIGENFUNCTIONS, AND EIGENVALUES

3.1 Observables and Operators

3.2 Measurement in Quantum Mechanics

3.3 The State Function and Expectation Values

3.4 Time Development of the State Function

3.5 Solution to the Initial-Value Problem in Quantum Mechanics

In this chapter we consider four basic postulates of quantum mechanics, which when
taken with the Born postulate described in Section 2.8, serve to formalize the rules of
quantum mechanics. Mathematical concepts material to these postulates are developed
along with the physics. The postulates are applied over and over again throughout the
text. We choose the simplest problems first to exhibit their significance and method of
application—that is, problems in one dimension.

3.1 OBSERVABLES AND OPERATORS

Postulate 1

This postulate states the following: To any self-consistently and well-defined observ-
able in physics (call it 4), such as linear momentum, energy, mass, angular momen-
tum, or number of particles, there corresponds an operator (call it 4) such that
measurement of A yields values (call these measured values a) which are eigenvalues
of 4. That is, the values, a, are those values for which the equation

3.1 Ap = ag an eigenvalue equation}
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TABLE 3.1 Examples of operators

D = d/ox Do(x) = dp(x)/ox

A= —9ox2=-D? Ap(x) = —d2ep(x)/dx>

M = 3*/ox dy Mo(x, y) = 0@(x, y)/ox dy
I = operation that leaves ¢ unchanged Ip=¢

0 =[x 0p(x) = [, dx'o(x)

F = multiplication by F(x) Fo(x) = F(x)p(x)

B = division by the number 3 Bo(x) = $o(x)

© = operator that annihilates ¢ Qp =0

P = operator that changes ¢ to a specific polynomial of ¢ Pop = @* - 3p? - 4
G = operator that changes ¢ to the number 8 Go

has a solution . The function ¢ is called the eigenfunction of A corresponding to the
eigenvalue a.

Examples of mathematical operators, which are not necessarily connected to
physics, are offered in Table 3.1. (Labels such as D, G, and M are of no special signifi-
cance.) An operator operates on a function and makes it something else (except for the
identity operator I).

Let us now turn to operators that correspond to physical observables. Two very
important such observables are the momentum and the energy.

The Momentum Operator p

The operator that corresponds to the observable linear momentum is
(3.2) p= —ihV

What are the eigenfunctions and eigenvalues of the momentum operator? Consider
that the particle (whose momentum is in question) is constrained to move in one
dimension (x). Then the momentum has only one nonvanishing component, p,. The
corresponding operator is

5,
33 p, = —ih —
(33) Px ih =
The eigenvalue equation for this operator is
., 0
(34 —iho ¢ =po
X

The values p, represent the only possible values that measurement of the x component
of momentum will yield. The eigenfunction ¢(x) corresponding to a specific value of
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66 THE POSTULATES OF QUANTUM MECHANICS

momentum (p,) is such that |¢|® dx is the probability of finding the particle (with
momentum p,) in the interval x, x 4+ dx. Suppose we stipulate that the particle is a
Jree particle. It is unconfined (along the x axis). For this case there is no boundary
condition on ¢ and the solution to (3.4) is

(3.5 @ = Aexp (szxx> = Ae™*~

where we have labeled the wavenumber k and have deleted the subscript x.
_ P

(3.6) k = 5

The eigenfunction given by (3.5) is a periodic function (in x). To find its wavelength A,
we set
(37) eikx — eik(x+1)
1 = e** = cos kA + i sin kA

which is satisfied if
(3.8) cos kA =1

sinkd =10
The first nonvanishing solution to these equations is

(3.9 kA =2n

which (with 3.6) is equivalent to the de Broglie relation

(310) p= 1

We conclude that the eigenfunction of the momentum operator corresponding to the
eigenvalue p has a wavelength that is the de Broglie wavelength h/p.

In quantum mechanics it is convenient to speak in terms of wavenumber k
instead of momentum p. In this notation one says that the eigenfunctions and eigen-
values of the momentum operator are

(3.1 @, = Ae**, p = hk

The subscript k on ¢, denotes that there is a continuum of eigenfunctions and eigen-
values, ik, which yield nontrivial solutions to the eigenvalue equation, (3.4).



The Energy Operator H

The operator corresponding to the energy is the Hamiltonian H, with momentum p

replaced by its operator counterpart, p. For a single particle of mass m, in a potential
field V(r),

2

(3.12) A=+ V@)=— j—mVZ + V(r)

ﬁ

2m
The eigenvalue equation for H,
(3.13) Ao(r) = Eg(r)

is called the time-independent Schrodinger equation. Tt yields the possible energies E
which the particle may have. Again consider the free particle. The energy of a free
particle is purely kinetic, so

a2 2
P h
3.14 A=5 - _ 2
( ) 2 2m

Constraining the particle to move in one dimension, the time-independent Schrodin-
ger equation becomes

nt 0?
(3.15) Sl Eop
In terms of the wave vector
(3.16) k? = 221—215
(3.15) appears as
(3.17) Pux + K20 =0

The subscript x denotes differentiation. For a free particle there are no boundary
conditions and we obtain’

(3.18) @ = Ae™* + Be™ '~

This is the eigenfunction of H which corresponds to the energy eigenvalue
hik?

3.19 E =

(3.19) o

We have found above (3.11) that the momentum of a free particle is #k. This is clearly
the same hk that appears in (3.19), since for a free particle
pZ B thZ

(3.20) E=j-=

! The solution to (3.17) with boundary conditions imposed is discussed in Section 4.1.

67
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Note also that the eigenfunction of A (3.18), with B = 0, is also an eigenfunction of p
(3.11). That A and p for a free particle have common eigenfunctions is a special case of
a more general theorem to be discussed later.! The following simple argument
demonstrates this fact. Let

(3.21) po = hko
Let us see if ¢ is also an eigenfunction of A (for a free particle).
N p plhke)  hk
3.22 H = — = = —
(3.22) ¢ =5 (p9)="—"—=5"b¢
_ (hky?
T 2m

It follows that ¢ is also an eigenfunction of H.
Both the energy and momentum eigenvalues for the free particle comprise a
continuum of values:

(3.23) E=

That is, these are valid eigenvalues for any wavenumber k. The eigenfunction (of both
H and p) corresponding to these eigenvalues is

(3.24) @, = A’

If the free particle is in this state, measurement of its momentum will definitely
yield sk, and measurement of its energy will definitely yield (h*k2/2m).

Suppose that we measure its position x; what do we find? Well, where is the
particle most likely to be? Again we call on the Born postulate. If the particle is in the
state ¢,, the probability density relating to the probability of finding the particle in the
interval x, x + dx, is

(3.25) |@i]? = |4)* = constant

The probability density is the same constant value for all x. That means we would be
equally likely to find the particle at any point from x = —o0 to x = +o0. This is a
statement of maximum uncertainty which is in agreement with the Heisenberg
uncertainty principle. In the state ¢,, it is known with absolute certainty that
measurement of momentum yields #k. Therefore, for the state ¢,, Ap = 0, whence
Ax = c0.

We mentioned in Section 2.7 that E and t are complementary variables; that is,
they obey the relation AE Ar > h. Specifically, this means that if the energy is
uncertain by amount AE, the time it takes to measure E is uncertain by At > h/AE.
l\iog;gor the problem at hand, in the state ¢,, it is certain that measurement of E yields
h2k*/2m.

! The commutator theorem, Chapter 5.
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Therefore, AE = 0. To measure E we have to let the particle interact with some sort of
energy-measuring apparatus, say a plate with a spring attached to measure the
momentum imparted to the plate when the particle hits it head on. Well, if the plate
with attached spring is placed in the path of the particle, how long must we wait
before we detect something? We can wait 10~ 8 s—or we can wait 10'° yr. The uncer-
tainty At is infinite in the present case, since there is an infinite uncertainty in Ax.

PROBLEMS

3.1 For each of the operators listed in Table 3.1 (D. A. M. etc.), construct the square, that is,

D A% ...

Answer (partial)

Po=lp=9¢

1 1 1
0% =0 [ ixpur= [ ax' [ dxot)
[} [} o]
F2p = F¢

Bo =10

P2p = P(Pp) = (¢° — 39> —4)° = 3(¢* — 30> — 47 — 4
3.2 The inverse of an operator A is written A~ ' It is such that
A 'dp=lp =9

Construct the inverses of D, I, F, B, O, G, provided that such inverses exist.
3.3 Anoperator O is linear if
Otag, + bp;) = a0p, + b0g,
where a and b are arbitrary constants. Which of the operators in Table 3.1 are linear and which are

nonlinear?
3.4 The displacement operator & is defined by the equation

2f(x) = flx+0
Show that the eigenfunctions of 9 are of the form
05 = e"g(x)
where
glx +{) = g(x)

and f is any complex number. What is the eigenvalue corresponding to ¢;?

3.5 An electron moves in the x direction with de Broglie wavelength 1078 cm.
(a) What is the energy of the electron (in eV)?
(b) What is the time-independent wavefunction of the electron?



3.2 MEASUREMENT IN QUANTUM MECHANICS

Postulate II

The second postulate' of quantum mechanics is: measurement of the observable A
that yields the value a leaves the system in the state ¢,, where ¢, is the eigenfunction
of A that corresponds to the eigenvalue a.

As an example, suppose that a free particle is moving in one dimension. We do
not know which state the particle is in. At a given instant we measure the particle’s
momentum and find the value p = &k (with k a specific value, say 1.3 x 10 cm™!).
This measurement? leaves the particle in the state ¢,, so immediate subsequent
measurement of p 1s certain to yield hk.

Suppose that one measures the position of a free particle and the position
x = x' is measured. The first two postulates tell us the following. (1) There is an
operator corresponding to the measurement of position, call it %. (2) Measurement
of x that yields the value x leaves the particle in the eigenfunction of % corresponding
to the eigenvalue x'.

The operator equation appears as

(3.26) %6(x — x') = x'6(x — x')

Dirac Delta Function

The eigenfunction of £ has been written® §(x — x’) and is called the Dirac delta
Junction. It is defined in terms of the following two properties. The first are the
integral properties

[ reee = xyax = 19
(3.27)
fw o(x — x)dx' =1

' This postulate has been the source of some discussion among physicists. For further reference, see B S DeWitt. Phys
Todar 23, 30 (September 1970).

* Measurement 1s taken in the idealized sense. More formal discussions on the theory of measurement may be found in
K. Gottfried, Quanium Mechanics. W. A Benjamuin. New York, 1966; J. Jauch, Foundations of Quanium Mechanics,
Addison-Wesley, Reading. Mass., 1968. and E. C. Kemble, The Fundamental Principles of Quantum Mechamcs with
Elementary Applications, Dover, New York, 1958,

* More accurately one says that 8(x — x’) 1s an eigenfunction of £ in the coordinate representation. This topic 1s returned
to in Section 7.4 and 1n Appendix A.
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or equivalently, in terms of the single variable y

f F3)60) dy = £(0)
(3.28) o

[ amar=1

The second defining property is the value
(3.29) iy) =0 (for y # 0)

A sketch of 8(y) is given in Fig. 3.1. Properties of §(y) are usually proved with the aid
of the defining integral (3.27). For instance, consider the relation

(3.30) yo'(y) = —(y)

To establish this relation we employ a test function f(y) and perform the following
integration by parts.

§5—
w 4

» © d d
[ rowsma= " Loy - | sz ona

(3.31) . if w
= _f_ 5(y)<y@ +f) dy = — f_ o) f(y) dy

which establishes (3.30).

The student should not lose sight of the fact that £, when operating on a function
f(x), merely represents multiplication by x. For example, 2/ (x) = xf(x). It is only
with regard to its own eigenvalue problem that £ assumes a somewhat more abstract
quality. These topics will be returned to in Chapter 11 and discussed further in
Appendix A.

1/e
5(»)=0,y#0
f 8(y)dy =1
- 8(y)
ftS(V)f(y)dy =f(0)
0 +e)2 FIGURE 3.1 Dirac delta function 5(y).
e/2 el Y The curve is distorted to bring out essential
features. A more accurate picture is ob-
tained in the limit € — 0.



PROBLEMS

3.6 Establish the following properties of d(y).
(@) o) =d(-y)

(b) ()= —5(-y)

() yo(») =0

(d) &ay) =a 'é(y)

(& 8y —a’)=Qa) '[6(y — a) + 6y + a)]

(Df 5a — )5y — bdy = &(a — b)

(8 fWéy—a)= flaély —a)
(h) yé&(y)= —d(y)

0 [aitrm - am =20

ftyo)=a

3.7 Show that the following are valid representations of 6(y):
(a) 2mé(y) = j ™ dk

sin 1y

(b) mo(y) = lim

n— o

Note: In mathematics, an object such as 6(y); which is defined in terms of its integral properties, is
called a distribution. Consider all y(y) defined on the interval (— o0, 00) for which

f x| dy < oo

-

Then two distributions, 8, and 8,, are equivalent if for all y(y),

f xéldy=f X0,dy

When one establishes that a mathematical form such as |, exp (iky) dy is a representation of
&(y), one is in effect demonstrating that these two objects are equivalent as distributions.

3.8 Show that the continuous set of eigenfunctions {§(x — x’)} obeys the “orthonormality”

condition

J‘” o(x — x)o(x — x")dx = 6(x" — x")

39 (a) Show that 8(/x) = 0.

(b) Evaluate 6(./x* — a?).

72



3.3 THE STATE FUNCTION AND EXPECTATION VALUES

Postulate I11

The third postulate of quantum mechanics establishes the existence of the state
function and its relevance to the properties of a system: The state of a system at any
instant of time may be represented by a state or wave function y which is continuous
and differentiable. All information regarding the state of the system is contained in
the wavefunction. Specifically, if a system is in the state y(r, t), the average of any
physical observabie C relevant to that system at time ¢ is

(3.32) (Cy = fw*éw dr

(The differential of volume is written dr.) The average, {(C), is called the expectation
value of C.

The physical meaning of the average of an observable C involves the following
type of (conceptual) measurements. The observable C is measured in a specific
experiment, X. One prepares a very large number (N) of identical replicas of X. The
initial states ys(r, 0) in each such replica are all identical. At the time ¢, one measures C
in all these replica experiments and obtains the set of values C,, C,, ..., Cy. The
average of C is then given by the rule

1

— ) C
N

M=

(3.33) (CH = ; N>1

]

1

The postulate stated above claims that this experimentally calculated average (3.33)
is the same as that given by the integral in (3.32). Another way of defining (C) is in
terms of the probability P(C;). This function gives the probability that measurement of
C finds the value C;. For (C), we then have
(3.34) (C> =) CP(C)

all C
This is a consistent formula if all the values C may assume comprise a discrete set (e.g.,
the number of marbles in a box). In the event that the values that C may assume
comprise a continuous set {e.g., the values of momentum of a free particle), {<C>
becomes

(3.35) (CY = f CP(C) dC

The integration is over all values of C. Here P(C) is the probability of finding C in the

interval C, C + dC.
The quantity <C) is also called the expectation value of C because it is repre-
sentative of the value one expects to obtain in any given measurement of C. This will
73
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74  THE POSTULATES OF QUANTUM MECHANICS

be especially true if the deviation of values of C from the mean value {C) isnot large.
As discussed in Section 2.7, a measure of this spread of values about the value (C>is
given by the mean-square deviation AC, defined through

(3.36) (AC)” = ((C = (C))?) =KC?) —(C)?

In order to become familiar with the operational use of postulate III, we work
out the following one-dimensional problem. A particle is known to be in the state

— — 2 7
(3.37) W(x, 1) = A exp [%} exp (’p . x) exp (iwq 1)

The lengths x, and a are constants, as are the momentum p, and frequency w,. The
(real) constant A4 is determined through normalization. This then ensures that Y*pisa
numerically correct probability density.

J [y > dx = Azaf e " dn = [2n A%a = 1

(3.38)
1

a/2n

A2 =

The nondimensional “dummy” variable # and constant 7, are such that

p=X"2X0
a
(3.39) x = a(n + no)
Mo = a

Having obtained 4, we may now calculate the expectation of x:

{x) = f Yrxy dx = J v*xy dx
(3.40) - 7 .
= A%4? f e "y + no) dy = anO(aA2 f e 2 dn)

which, with the normalization condition (3.38), gives

(3.41) x) = any = x,
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W12 = P(x) §

" |

Xg X

FIGURE 3.2 Gaussian probability density with variance a’. The variance measures the spread of P(x)
about the mean, (x> = x;.In quantum mechanics the square root of variance a is called the uncertainty in x
and is denoted as Ax, so for the case under discussion,

a=Ax = J{xD — (x?

[Note that integration of the odd integrand 5 exp (—#?) in (3.40) vanishes.] That x,
is the proper value for {x) is evident from the sketch of |/ |* shown in Fig. 3.2.
If we call

(3.42) |¥|? dx = P(x) dx

the probability of finding the particle in the interval x, x + dx, then

(3.43) (x> = fn xP(x) dx

- o

This is consistent with definition (3.35).
The probability density

P(x) =

1 exp |:—(x - XO)Z:I
a\/ﬂ 2a2

is called the Gaussian or normal distribution, and a is called the variance of x. It is a
measure of the spread of P(x) about the mean value

(x) = xq

As shown in Problem 3.10, the variance of x is the same as the mean-square deviation,
(Ax)2.

(Ax)? = (x> — (x)>? = a? + x,2 — x,% = a?
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If it is known that a particle is in the state y(x) at a given instant of time, and that in
this state, (x> = x,, one may then ask: With what certainty will measurement of x
find the value x,? A measure of the relative uncertainty is given by the square root of
the variance, Ax. If this value is large (compared to {x)), one may say with little
certainty that measurement will find the particle at x,. If, on the other hand, Ax is
small, one is more certain that measurement will find the particle at x = x,. In
quantum mechanics Ax is called the uncertainty in x, introduced previously in Section
2.7.

Next, we calculate the expectation of the momentum for a particle in the state y,

(3.37).

[e0] a0 a
cay = wwa-| z//*(—iha—x)w dx

. h 2 ® 2
= A’a f <p0 + ;—an)e‘” 2 dn = p0<A2a f e 2 d;7>

= Po

1t follows that the parameter p, which appears in the state function y is the average
value of p. In any given measurement of p, any of a continuum of values can be
obtained. Only in the event that i is an eigenfunction of p would measurement of p
yield one definite value (i.e., the eigenvalue corresponding to the said eigenfunction).

PROBLEMS

3.10 For the state i, given by (3.37), show that
(Ax)? = a?

Argue the consistency of this conclusion with the change in shape that | |* suffers with a change in
the parameter a.
3.11 Calculate the uncertainty Ap for a particle in the state iy given by (3.37). Do you find your
answer to be consistent with the uncertainty principle? (In this problem one must calculate {p*>.
The operator p? = —h? 3%/3x2)
3.12 Let s be the number of spots shown by a die thrown at random.

(a) Calculate {s).

(b) Calculate As.
3.13 The number of hairs (N,) on a certain rare species can only be the number 2' (I = 0,1,2,...).
The probability of finding such an animal with 2" hairs is ¢~ LI' What is the expectation, (N?
What is AN ?



3.4 TIME DEVELOPMENT OF THE STATE FUNCTION

Postulate 1V

The fourth postulate of quantum mechanics specifies the time development of the
state function (r, t): the state function for a system (e.g., a single particle) develops in
time according to the equation

(3.45) ik % Y(r, 1) = Hy(r, 1)

This equation is called the time-dependent Schrédinger equation.'! The operator His
the Hamiltonian operator. For a single particle of mass m, in a potential field V(r), it is
given by (3.12). If A is assumed to be independent of time, we may write

(3.46) A = A(r)

Under these circumstances, one is able to construct a solution to the time-dependent
Schridinger equation through the technique of separation of variables. We assume a
solution of the form

(3.47) Y(r. 1) = o(nT(1)
Substitution into (3.45) gives

. T Hop
(3.48) ih 7=

The subscript t denotes differentiation with respect to 1. Equation (3.48) is such that
the left-hand side is a function of t only, while the right-hand side is a function of r only.
Such an equation can be satisfied only if both sides are equal to the same constant, call
it E (we do not yet know that E is the energy).

(3.49) Ho(r) = Eq(r)
3.50 O E\riy =0

The first of these equations is the time-independent Schrédinger equation (3.13).
This identification serves to label E, in (3.49), the energy of the system. That is, E, as it
appears in this equation, is an eigenvalue of H. But the eigenvalues of H are the
allowed energies a system may assume, and we again conclude that E is the energy of
the system.

' A formulation of the Schrédinger equation that has its ongin in the classical principle of least action has been offered
by R. P Feynman. Ret. Mod. Phs 60. 367 (1948). An elementary description of this derivation may be found in
S. Borowitz. Quantum Mechanics. W A Benjamin, New York. 1967
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78 THE POSTULATES OF QUANTUM MECHANICS

The second equation (3.50) is simply solved to give the oscillating form
iE
(3.51) T(t) = A exp (— ’—h—t)

Suppose that we solve the time-independent Schrodinger equation and obtain
the eigenfunctions and eigenvalues

(3.52) Ho, = E,9,
For each such eigensolution, there is a corresponding eigensolution to the time-
dependent Schrédinger equation

iE

(3.53) Ualr, 1) = Agy(r) exp (— h"t)

In equations (3.52) and (3.53) the index n denotes the set of integersn = 1,2,.... This
notation is appropriate to the case where solution to the time-independent
Schrodinger equation gives a discrete set of eigenfunctions, {¢,}. Such is the case for
problems that pertain to a finite system, such as a particle confined to a finite domain
of space. We will encounter this property in Chapter 4 when we solve the problem of a
bead constrained to move on a straight wire strung between two impenetrable walls,

In the one-dimensional free-particle case treated in Section 3.2, one obtains a
continuum of eigenfunctions ¢,(x) and, correspondingly, a continuum of eigenvalues.
E,. To repeat, these values are

(3.54) ﬁ<Pk = Ey
h2k2

(3.55) @, = A exp (ikx), E, =
2m

For each such time-independent solution, there is a solution to the time-dependent
Schrédinger equation

(3.56) Yi(x, 1) = Ae'*x e

where we have labeled

(3.57) ho = E,

The structure of the solution (3.56) is characteristic of a propagating wave. More
generally, any function of x and ¢ of the form

(3.58) fO )= f(x — )

represents a wave propagating in the positive x direction with velocity v. To see this.
we note the following property of f:

(3.59) flx + vAt, 1 + Ar) = f(x, 1)
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flx. 0
)
—\_4 |
L (a) x
| .
fx. t+An i
'
f
I
|
|
| X
]
(b)

FIGURE 3.3 Propagating wave, f(x, 1) = f(x — vt): (a) at time ¢; (b) at time / + Ar.

At any given instant t, one may plot the x dependence of f (Fig. 3.3). If t increases to
t + At, this curve is displaced to the right (as a rigid body) by the amount v At. We
conclude from these arguments that the disturbance f (3.58) propagates with the
wave speed v.

Now let us return to the free-particle eigenstate, (3.56), and rewrite it in the form

(3.60) U, 1) = A exp [ik(x — %r)]

Comparison with the waveform (3.58) indicates that (1) ¥, is a propagating wave
(moving to the right), and (2) the speed of this wave is
w hw pm_ p v

(3.61) e )

The velocity v, represents the classical velocity of a particle of mass m and momentum
p. Thus we find that the wave speed of the state function of a particle with weli-defined
momentum, p = hk, is half the classical speed, v, = p/m.

This discrepancy is due to the following fact. Suppose that we calculate the
probability density corresponding to the state given in (3.56). We obtain the result that
it is uniformly probable to find the particle anywhere along the x axis. This is not a
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V{x,1)

FIGURE 3.4 Wave packet at a given
instant of time 1.

typical classical property of a particle. The state function that better represents a
classical (localized) particle is a wave packet. The shape of such a function is sketched
in Fig. 3.4. Such a state may be constructed as a sum of eigenstates of the form given in
(3.56) (a Fourier series). The velocity with which the packet moves is called the group
velocity,!

ow

(3.62) b ==

For a wave packet composed of free-particle eigenstates, v, takes the value

ohw  O(H k2 hk
(3.63) w _Oohk2m) Ak _p

Yo T hok T hok mom
= UcL

The value of k that enters the formula for v, is the value about which there is a
superabundance of y, component waves. These topics will be more fully developed in
Chapter 4. For the moment we are concerned only with the identification given in

(3.63).

PROBLEMS
3.14 Describe the evolution in time of the following wavefunctions:

i, = A sin wt cos k(x + ct)
¥, = Asin (1072 kx) cos k(x — c1)
Wy = A cos k(x — cr) sin [107*k(x — c1)]

3.15 What is the expectation of momentum {p) for a particle in the state

Y(x, 1) = Ae™ ™ e~ Wt gin fex?

! The concepts of phase and group velocities are returned to in Section 6.1.



3.5 SOLUTION TO THE INITIAL-VALUE PROBLEM
IN QUANTUM MECHANICS

Functions of Operators

The time-dependent Schrédinger equation permits solution of the initial-value prob-
lem: given the initial value of the state function y(r, 0), determine Y (r, t). We will
formulate the solution to the problem for a time-independent Hamiltonian. The more
general case is given as an exercise (Problem 3.18).

First we rewrite (3.45) in the form

0 iH
(3.64) —YE 0 + '7 W(r, 1) = 0

Next, we multiply this equation (from the left) by the integrating factor Ut

. itH
(3.65) 01 = exp (%)

which is the inverse of
R itH
(3.66) U = exp (— —)

This function of the operator, H, is itself an operator. It is defined in terms of its Taylor
series expansion.

167 O-1 itH 4 itH 1 [itH\?
(367) B W A TE W B

More generally for any operator A, the function operator f(A) is defined in terms of a
series in powers of 4. A few examples are provided in the problems.

Let us return to the problem under discussion. Multiplying the time-dependent
Schrodinger equation through by the integrating factor (3.65), one obtains the
equation

0 itH
(3.68) E [exp (T)w(r, t)] =0

Integrating over the time interval (0, t) gives

(3.69) exp <$)w(r, =y 0)=0

81



hsgsj
Rectangle


82 THE POSTULATES OF QUANTUM MECHANICS

Multiplying this equation through by U gives the desired result:

(3.70) Y(r, t) = exp ( - %)w(r, 0) = Uy(r, 0)

Here we have used the fact that

PN itH ] R
3.71) UU™! =exp <— %) exp <%) =1

where [ is the identity operator.
Suppose that in solution (3.70) we choose the initial state to be an eigenstate of

H. Callit @,, so that
(3.72) Yu(r, 0) = @,r)
Ay, = E, o,

By virtue of the theorem presented in Problem 3.16,

itA iE,t
Wa(r, t) = exp <— T)(p,, = exp (— . )(P,.

(3.73) = e~ (1)
hw, = E,

This is the solution of the time-dependent Schrodinger equation, derived in Section 3.4
by the technique of separation of variables. The solution given in (3.70) is more
general. It exhibits the development of an arbitrary initial state y(r, 0) in time. It will
be used extensively in the chapters to follow, where the student will gain a more
workable understanding of the equation.

As a final topic of discussion in this chapter we note the following. Suppose that
a system is in an eigenstate of the Hamiltonian at t = 0, described by (3.72). At this
(initial) time the expectation of an observable A4 is

(3.74) (ADreg = f UHx, 0 (. 0) dr = f 0.t Ag, dr

What is (A4) at a later time, t > 07 The state of the system at t > 0 is given by (3.73):

(3.75) Yo(r, 1) = e",(r)
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so that at ¢ > 0 (assuming that §4/0t = 0),
(A, = f:,b*(r, DAY(r, 1) dr = e*ionte™iont fcp,,*AAcp,, dr

(3.76) - f ot Ay dr = (A>e_y

{AY g = {AD =0 in a stationary state

The expectation of any observable is constant in time, if at any instant in time the sys-
tem is in an eigenstate of the Hamiltonian. For this reason eigenstates of the Hamil-
tonian are called stationary states.

(3.77) !V Ya(r, 1) = e, (1) a stationary state

In the first three sections of this chapter we encountered functions relevant to a
system which are eigenfunctions of operators corresponding to observable properties
of that same system. In what sense are these eigenfunctions related to the state function
of the system? From postulate II we know that ideal measurement of A leaves the
system in the eigenstate of A corresponding to the value of 4 that was found in
measurement. Thus, the state function of the system immediately after measurement
is this same eigenstate of 4. The state function then evolves in time according to
(3.70).

PROBLEMS

3.16 Let the eigenfunctions and eigenvalues of an operator A be {¢,} and {a,}, respectively,
so that

Ap, = a,¢,
Let the function f(x) have the expansion
@
f)y= ) bx!
=0

Show that ¢, is an eigenfunction of f(A) with eigenvalue f(a,). That is,

f(De, = fla)e,
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3.17 If p is the momentum operator in the x direction, and f(x) is an arbitrary “well-behaved”
function, show that

exp <i%p)f(><) =fx+0

The constant { represents a small displacement. In this problem the student must demonstrate
that the left-hand side of the equation above is the Taylor series expansion of the right-hand side
about { = 0.

3.18 If A is an explicit function of time, show that the solution to the initial-value problem
(by direct differentiation) is

Y(r, 1) = exp [— % ft dt’H(r’):ll//(r, 0)
0

You may assume that H(n)H(t') = H(YH().

3.19. What is the effect of operating on an arbitrary function f(x) with the following two
operators?

(@) 0, = (8%0x*) — 1 + sin? (8°/0x>) + cos? (8°/9x?).

il

b
(b) O, = cos (26/0x) + 2sin? (3/6x) + f dx.

3.20 (a) The time-dependent Schrédinger equation is of the form

& on

ot v

Consider that a is an unspecified constant. Show that this equation has the following property.
Let A be the Hamiltonian of a system composed of two independent parts, so that

I:I(xla X)) = FI1(X1) + qu(xz)

and let the stationary states of system 1 be ,(x,, t} and those of system 2 be yr,(x,, t). Then the
stationary states of the composite system are

Ylxy, X5) = Wy (xy, D 5(x,, D)

That is, show that this product form is a solution to the preceding equation for the given composite
Hamiltonian.

Such a system might be two beads that are invisible to each other and move on the same
straight wire. The coordinate of bead 1 is x, and the coordinate of bead 2 is x .

(b) Show that this property is not obeyed by a wave equation that is second order in time,
such as

a = Ay

00

t2

(c) Arguing from the Born postulate, show that the wavefunction for a system composed

of two independent components must be in the preceding product form, thereby disqualifying
the wave equation in part (b) as a valid equation of motion for the wavefunction .
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Answer (partial)

(c) If the two components are independent of each other, the joint probability density
describing the state of the system is given by

P12:P1P2

This, in turn, guarantees that the probability density associated with component 1,

Pi(x;) = fpu(xh X3) dx;

is independent of the form of P,(x,) (and vice versa). The product form for P, is guaranteed by
the product structure for the wavefunction y(x,, x,).
3.21 It is established in Problem 3.20 that for the joint probability for two independent systems
to be consistently described by the time-dependent Schrédinger equation, this equation must be
of the form

oy A

a—=H

ot v
where a is some number. Show that for this equation to imply wave motion, a must be complex.
You may assume that H has only real eigenvalues.

Answer
Following development of the general solution (3.70), we find that the given equation implies the
solution

tH
W(r, 1) = exp <7> y(r, 0)

Since H has only real eigenvalues, the time dependence of y(r, ¢) is nonoscillating. It modulates
y(r, 0) in time and does not give propagation. Thus, if a is real, y» cannot represent a propagating
wave. (Note: The fact that a is complex implies that y is complex. These last two problems
illustrate the necessity of complex wavefunctions in quantum mechanics.)





