Classical mechanics:

X(t), y(t), z(t) specifies the system completely. Or,
x(to), y(to),z(to), px(to), py(to),pz(to) (initial position
and momentum) together with Force specifies the

system completely.

Essentially, the force can be viewed as an operator
which propagates the time evolution of the system:
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(L.13) E(x,p, 2z, X, y,2) > H(X, y, 2, py, Py, P.) = LT (P +p,° +p.°)+ y

The energy, written in this manner, as a function of coordinates and momenta is
called the Hamiltonian, H. One speaks of p, as being the momentum conjugate to
x; p, is the momentum conjugate to y; and so on.

The equations of motion (i.e., the equations that replace Newton's second law)
in Hamiltonian theory are (for a point particle moving in three-dimensional space)
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1.3 THE STATE OF A SYSTEM

To know the values of the generalized coordinates of a system at a given instant s to
know the location and orientation of the system at that instant. In classical physics we
can ask for more information about the system at any given instant. We may ask for
its motion as well. The location, orientation, and motion of the system at a given
instant specify the state of the system at that instant. For a point particle in 3-space,
the classical state I is given by the six quantities (Fig. 1.14)

(1.36) I'=(x,y,2x, ¥ 2)
In terms of momenta,

(1.37) I'=(x, y. 2, px. py» D:)



In quantum mechanics, one can not concurrently specify definite
guantities of some variables (like x and px for example) to
characterize the state of the system (due to Heisenberg
uncertainty).

What variables can one concurrently specify which give the
maximum information of the state of a system (“good” quantum
numbers)?

- Consider free particle in 1D: x, and E

- Consider Hydrogen atom: Lz, L, and E

Can specify other pairs of quantities in other ‘representations’.

In classical mechanics, Newton’s laws of motion determines how
the system changes in time.

In quantum mechanics, Schrodinger’s equation determines how
the system changes in time.



Postulates of Quantum Mechanics from Liboff,
Introduction to Quantum Mechanics

Postulate 1

This postulate states the following: To any self-consistently and well-defined observ-
able in physics (call it 4), such as linear momentum, energy, mass, angular momen-
tum, or number of particles, there corresponds an operator (call it 4) such that
measurement of A yields values (call these measured values a) which are eigenvalues

of 4. That is, the values, a, are those values for which the equation
1

(3.1) Ag = agp an eigenvalue equation

has a solution ¢. The function ¢ is called the eigenfunction of A corresponding to the

eigenvalue a.



TABLE 3.1 Examples of operators

D = a/ox Dealx) = Jepl x )/dx
A= —@axt = - D? Ap(x) = —dtp(x)/ox?
M = d*fox oy Muo(x, v) = @ plx, y)/dx dy
I = operation that leaves p unchanged f.sp =
Q= |, dx Qolx) = [ dx'p(x)
F = multiplication by F(x) Fo(x) = F(x)pl(x)
B = division by the number 3 Bolx) = Lo(x)
® = operator that annihilates ¢ Gp =0
P = operator that changes ¢ to a specific polynomial of ¢ = Pop = ¢° — 3p° — 4
(; = operator that changes @ to the number § Go =8
(3.3) 5= _inl
ox

The eigenvalue equation for this operator is

d

(3.4) —’ﬁa © = P
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Postulate 11

The second postulate’ of quantum mechanics is: measurement of the observable 4
that yields the value a leaves the system in the state ¢,, where ¢, is the eigenfunction
of A that corresponds to the eigenvalue a.

As an example, suppose that a free particle is moving in one dimension. We do
not know which state the particle is in. At a given instant we measure the particle’s
momentum and find the value p = hk (with k a specific value, say 1.3 x 10'°cm™!).
This measurement” leaves the particle in the state ¢,, so immediate subsequent
measurement of p is certain to yield hk.



Postulate 111

The third postulate of quantum mechanics establishes the existence of the state
function and its relevance to the properties of a system: The state of a system at any
instant of time may be represented by a state or wave function iy which is continuous
and differentiable. All information regarding the state of the system is contained in
the wavefunction. Specifically, if a system is in the state y(r, t), the average of any
physical observable C relevant to that system at time ¢ is

(3.32) (CY = jlp*ap dr

(The differential of volume is written dr.) The average, (C), is called the expectation
value of C.



Postulate 1V

The fourth postulate of quantum mechanics specifies the time development of the
state function y(r, 1): the state function for a system (e.g., a single particle) develops in
time according to the equation

(3.45) if % w(r, 1) = Hy(r, 1)

This equation is called the time-dependent Schrédinger equation.! The operator H is
the Hamiltonian operator. For a single particle of mass m, m a potential field V(r), it is
given by (3.12). If H is assumed to be independent of time, we may write

The time-dependent Schrédinger equation permits solution of the initial-value prob-
lem: given the initial value of the state function ¥«(r, 0), determine yr(r, 7). We will



The following are from Cohen-Tannoudji, Quantum Mechanics:

First Postulate: At a fixed time ¢, the state of a physical system is defined
by specifying a ket | ¥(t,) > belonging to the state space &.

It is important to note that, since & 1s a vector space, this first postulate
implies a superposition principle : a linear combination of state vectors is a
state vector. We shall discuss this fundamental point and its relations to

the other postulates in §E.

Second Postulate : Every measurable physical quantity &/ is described by an
operator A acting in & ; this operator is an observable.

(i/) Unlike classical mechanics (¢f. § A), quantum mechanics describes in a funda-
mentally different manner the state of a system and the associated physical
quantities : a state is represented by a vector, a physical quantity by an

operator.



Third Postulate : The only possible result of the measurement of a physical
quantity ./ is one of the eigenvalues of the corresponding observable A.

Fourth Postulate (case of a discrete non-degenerate spectrum ): When the
physical quantity . is measured on a system in the normalized state |y >,
the probability 2(a,) of obtaining the non-degenerate eigenvalue a, of the
corresponding observable A is:

Pla,) = [KCu, [ ¢ DI?

where | u, > is the normalized eigenvector of 4 associated with the eigenvalue
a

Fourth Postulate (case of a continuous non-degenerate spectrum): When the
physical quantity & is measured on a system in the normalized state |y ),
the probability d2?(«) of obtaining a result included between o and a + da

1s equal to:
d2 () = |<{v,|¥ ) |* dx

where |v, ) is the eigenvector corresponding to the eigenvalue « of the obser-
vable A associated with /.




Fifth Postulate: If the measurement of the physical quantity & on the system
in the state | > gives the result a,, the state of the system immediately after the

Py
AT

measurement is the normalized projection, , of | ) onto the

eigensubspace associated with a_.

Sixth Postulate: The time evolution of the state vector |y (r)) is governed
by the Schrodinger equation:

m% | W(t) > = H(t) | y(1) )

where H(tr) is the observable associated with the total energy of the system.

Pauli Exclusion principle for Fermions:

When a system includes several identical particles, only certain kets
of its state space can describe its physical states. Physical kets are, depending
on the nature of the identical particles, either completely symmetric or
completely antisymmetric with respect to permutation of these particles.
Those particles for which the physical kets are symmetric are called bosons,
and those for which they are antisymmetric, fermions.




Postulates did not state anything regarding what a
measurement actually is!

Postulates only state that there is a corresponding
operator associated with a measurement, and that the
wavefunction ‘collapses’ into a specific eigenvector (of
this operator) after the measurement is made.

What is a measurement? What do people mean when
they state the ‘collapse of the wavefunction’?



Collapse of the wavefunction: Double Slit example

Right slit open
Consider single electron through
double slit:

Immediately before measurement
(before striking the detector),
yspread out over entire screen ---
Lelt shit open X uncertain.

Immediately after measurement,
v no longer spread out ---
X known.

Wave function collapsed into a

Both slits open definite position.

wave theor ¥

particle theory




Interpretations of QM:

The weirdest feature of the Copenhagen interpretation is that it
requires that the wavefunction suffer a discontinuous, unpredicta-
ble change during the measurement. Consider, for instance, the
impact of an electron on the fluorescent screen in the electron-
diffraction experiment. This impact and the Hlash of light released
in it constitute an (approximate) measurement of the position of
the electron. Just before this measurement, the wavefunction was
spread out all over the screen; immediately after the measure-
ment, the electron position is known to lie within some small spot
on the screen, and the wavefunction must therefore have an extent
no larger than this spot. Thus, during the measurement, the wave-
function suffers an unpredictable collapse, or reduction. The col-
lapse is unpredictable, since we have no way of knowing onto
what part of the sereen the wavefunction will collapse—we know
only the probability distribution of the spots on which the wave-
function collapses, that is, the probability distribution of positions
for the electron on the screen.



Collapse of the wavefunction and entanglement:
Schrodinger’s cat

What causes the ‘collapse of the wavefunction’? More to
the point, how is this effect interpreted?

illustrate with a classical example: Schrodinger’s cat



Collapse of the wavefunction and entanglement:
Schrodinger’s cat

(2)H geiger counteris (1) Radioactive material has
triggered, hammer falls  a 50:50 chance of triggering
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Schrodinger's Cat
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Collapse of the wavefunction and entanglement:
Schrodinger’s cat

(2) K geiger counteris (1) Radioactive material has
o di o
Schrodinger's Cat triggered, hammer falls 2 50:50 chance of trizgering

N

OF

QM: The quantum state of the atom is in a superposed state of a decayed atom state and
a not decayed state.

A measurement will collapse this wavefunction into one of these two possibilities, but at
what stage of this process does the measurement actually occur?



Interpretations of QM: Griffith’s Chapter 1
Go back to detecting a particle which goes through slit

1. The realist position: The particle was at C. This certainly seems like a
sensible response, and it is the one Einstein advocated. Note, however, that if this 1s
true then quantum mechanics is an incomplete theory, since the particle really was at
C, and yet quantum mechanics was unable to tell us so. To the realist, indeterminacy
is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put it, “the
position of the particle was never indeterminate, but was merely unknown to the
experimenter.”” Evidently W is not the whole story—some additional information
(known as a hidden variable) is needed to provide a complete description of the
particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it. ... We compel [the particle]
to assume a definite position.”* This view (the so-called Copenhagen interpretation)
is associated with Bohr and his followers. Among physicists it has always been the

most widely accepted position. Note, however, that if it is correct there is something
very peculiar about the act of measurement—something that over half a century of
debate has done precious little to illuminate.



Interpretations of QM: Griffith’s Chapter 1

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status of
a particle before a measurement, when the only way of knowing whether you were
right is precisely to conduct a measurement, in which case what you get is no longer
“before the measurement”? Itis metaphysics (in the perjorative sense of the word) to
worry about something that cannot, by its nature, be tested. Pauli said, “One should
no more rack one’s brain about the problem of whether something one cannot know
anything about exists all the same, than about the ancient question of how many angels
are able to sit on the point of a needle.” For decades this was the “fall-back” position
of most physicists: They’d try to sell you answer 2, but if you were persistent they’d
switch to 3 and terminate the conversation.



Collapse of the wavefunction : Ohanian Chapter 12
Schrodigner’s cat scenario:

Although such a schizoid superposition of a live-cat state vec-
tor and a dead-cat state vector does violence to our intuition, we
cannot disprove it by any experiment. As soon as we open the
chamber, or use any measuring device to detect the life signs of
the cat, the state vector collapses into either the live-cat configura-
tion or the dead-cat configuration, with equal probabilities. Thus,
we can never “see” the cat in the superposed state. Instead, the
act of observation or of measurement does something very drastic
to the state of the cat—it flips the cat into either the live state or the
dead state,

) U meesss s predagauGiil, UIUENDIE Tecord.

In the Gedankenexperiment of Schrodinger’s cat, the orthodoy
Copenhagen interpretation claims that the quantum-mechanical
wavefunction collapses when the Geiger counter makes a mea-
Surement on the radioactive substance, and therefore the state of
the Geiger counter (and the state of the cat) never forms a superpo-
sition of two macroscopically different states. At each instant, the
Geiger counter either performs an irreversible act of amplification
or does not perform such an act, that is, the Geiger counter adopts
either a definite state of discharge or a definite state of no dis-
Eharge. This means that the Geiger connter aramnirac infammas: -



Interpretations of QM: Ohanian Chapter 12

12.1  The Copenhagen Interpretation

The mpin features of the Copenbagen interpretedion vap be briehy
summarized as follaws:

k. The sizte veetor )é} provides a complete chavgoterization of
the state of the systam,

2, The state vector tells vs the probability distribution for the
result of the measurement of any observable guaptity, This
probability distributlon applies to each individual quaptum
pastiole o guantum systexn.

3. The uneertainty relations indicate the intringic spreads in
the values of complementary observables for the indévidual
guantum particle or guaptum system, These uncertainty
pelubive deny the existenos of sharp valves of complemen-
tary observablgs.

4, Messwements produce  unpredietable, discontinuous
ghanges in the stafe vector, which do net obey the Schrd-

dinger equation. The outcome of a single measurement of
an ehservable is unpredietable—the outcome can be any of
the eigenvalues within the spread of the probability distri-
bution, Dwring the measurement, the state of the svstem
collapses intg an cigensiate of the ebservahle.



Interpretations of QM: Ohanian Chapter 12

Popular Picture. Physicists have a deep predilection for con-
tinuity in nature (Natura non facit saltus), and they tend to be
uncomfortable with the discontinuous collapse and with the some-
what capricious dichotomy between measured system and appa-
ratus demanded by the orthodox Copenhagen picture. The popu-
lar picture is an alternative to the orthodox Copenhagen picture; it
is favored by many, perhaps by most, of the physicists of today. In
the popular picture, there is no collapse. The state vector evolves
continuously at all times, according to the Schrédinger equation.
Both the system and the apparatus are treated quantum-mechani-
cally, and they are described by a joint state vector. A measure-
ment is regarded as an interaction between-the system and the
apparatus, as in our example of the Stern—Gerlach experiment of
Section 12.2. During such an interaction, the state vectors of the
system and the apparatus become correlated, and the joint state
vector forms a superposition of these correlated state vectors.



Interpretations of QM: Ohanian Chapter 12

that is, the off-diagonal terms. A somewhat different version of the
popular picture attempts to achieve such a cancellation by exploit-
ing unpredictable, random phase differences that are supposedly
introduced into the state vector for the system when it interacts
with the apparatus during measurement.'? This version of the
popular picture argues that the microscopic quantum state of the
apparatus is not known, and is not rﬂprudumblﬁ from one repeti-
tion of the measurement to the next; even if we “reset” the appa-
ratus for each repetition of the measurement, there will he uncon-
trollable and unpredictable fluctuations in its microscopic
quantum state. When the measured system interacts with this ap-



Interpretations of QM: Ohanian Chapter 12

e - e

| Suhjelr::ﬁ‘ve Picture. Another proposal for the collapse is that it
is produced in the mind of the observer, by the intervention of the

observer’s consciousne ‘ '
e * -:ss,‘Tth nobion was first proposed by von

Many-Worlds Picture. Another, radically different treatment
of the collapse problem is the many-worlds picture of Everett,!?
In this picture, as in the popular picture, there is no collapse, and
the state vector evolves according to the Schrodinger equation at
all times. But the many-worlds picture differs from the popular
picture in that it includes the observer as part of the gquantum-
mechanical system. Thus, the many-worlds picture eliminates the
dividing line (Heisenberg cut) between the ohserver and the appa-
ratus, whereas the popular picture implicitly retains this dividing
line. The interaction between measured system, apparatus, and

1 hll r L



Stern-Gerlach Experiment with electrons:
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Stern-Gerlach Filter:

Spin-Up
Beam

\
—

Electron 3 Magnets &
Gun Beam Beam Stop




Using the Stern-Gerlach Filters:
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Using the Stern-Gerlach Filters:

http://faraday.physics.utoronto.ca/PVB/Harris
on/SternGerlach/Flash/SGInteractive.html

Fraction transmitted from one SG through the
next:

Cos(a/2)"2

where a is the relative angle between the filters



Correlated Electrons + Stern Gerlach (SG)

1-—@—"' I Consider a radioactive substance that emits a

pair of electrons in each decay.

Conservation of momentum:
1. two electrons travel away from each other
2. They will have opposite angular
momentum (spins) i.e. the spins are
l. correlated

the correlation is sin(a/2)"2 squared where a is
the relative angle between the filters

Special Notes:
One measurement does not effect the
*‘ = ]' statistics of the other measurement

The statistics of both measurements are
effected by the relative orientation!



Bell’s Inequality using Stern-Gerlach filters:



Using the Stern-Gerlach Filters:
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| Quantpm mechanics does not supply us with concrete mental
pictures of the behavior of atoms and subatomic particles. Quan-
tum mechaniﬂﬂ does not tell us what atoms and subatomic particles
are like; it merely tells us what happens when we perform mea-
surements. As Heisenberg said: “The conception of objective re-
i.:lIltf.«’ : 1-_{1 evapnrai:ed into the . . . mathematics that represents no
Eudngiﬁ;f ﬂ?i:?il:]l;;ig i{,?lementﬂr}r particles but rather our knowl-



Interpretations of QM:

| o i STUves s L LG apCUULEs O ODServation,
iﬂ-ﬂﬂfd]'iﬂg 1tn the Copenhagen interpretation, quantum S}rstmf:; in

emselves do not have sharply defined attributes, only diffuse
potentialities, which are capable of becoming sh.';lrpl‘f; defined
when we perform suitable measurements. The attributes of a
quantum system depend on the apparatus used to measure them
and they exist only in relation to this apparatus. Thus. the attri:
butes are a jni_nt. property of the system and the appar;ms. This



