Chapter 42. Atomic Physics

Quantum mechanics provides us with an understanding of atomic structure and atomic properties. Lasers are one of the most important applications of the quantum-mechanical properties of atoms and light.

Chapter Goal: To understand the structure and properties of atoms.

Chapter 42. Atomic Physics

Topics:

- •The Hydrogen Atom: Angular Momentum and Energy
- •The Hydrogen Atom: Wave Functions and Probabilities
 - The Electron's Spin
 - Multielectron Atoms
 - •The Periodic Table of the Elements
 - Excited States and Spectra
 - Lifetimes of Excited States
 - Stimulated Emission and Lasers

Hydrogen atom - solving Schrodinger's Equation

- **1.** Specify a potential-energy function.
- 2. Solve the Schrödinger equation to find the wave functions, allowed energy levels, and other quantum properties.

 $U(r) = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r}$

Solve Schrodinger equation in 3-D: Spherical coordinates; boundary conditions on radial, periodic boundary conditions on theta and phi

Leads to quantization of energy, restrictions on total angular momentum and z-component of angular momentum

FIGURE 42.1 The electron in a hydrogen atom is distance r from the proton.

The normalized position wavefunctions, given in spherical coordinates are:

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^{\ell} L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_{\ell}^m(\vartheta,\varphi)$$

where:

$$\rho = \frac{2r}{na_0}$$

 a_0 is the Bohr radius.

 $L_{n-\ell-1}^{2\ell+1}(
ho)$ are the generalized Laguerre polynomials of degree *n-ℓ-1*.

 $Y_{\ell}^m(artheta,arphi)$ is a spherical harmonic function of degree ℓ and order m.

The quantum numbers can take the following values:

$$n = 1, 2, 3, ...$$

 $\ell = n - 1, n - 2, ..., 1, 0$
 $m = -\ell, ..., \ell$

Stationary States of Hydrogen

Solutions to the Schrödinger equation for the hydrogen atom potential energy exist only if three conditions are satisfied:

1. The atom's energy must be one of the values

$$E_n = -\frac{1}{n^2} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{2a_{\rm B}} \right) = -\frac{13.60 \text{ eV}}{n^2}$$
 $n = 1, 2, 3, \dots$

where a_B is the Bohr radius. The integer n is called the **principal quantum number.** These energies are the same as those in the Bohr hydrogen atom.

Stationary States of Hydrogen

2. The angular momentum *L* of the electron's orbit must

be one of the values

$$L = \sqrt{l(l+1)}\hbar$$
 $l = 0, 1, 2, 3, \dots, n-1$

The integer *l* is called the **orbital quantum number.**

3. The *z*-component of the angular momentum must be one of the

l	Symbol		
0	S		
1	p		
2	d		
3	f		

$$L_z = m\hbar$$
 $m = -l, -l + 1, ..., 0, ..., l - 1, l$

The integer m is called the **magnetic quantum number.** Each stationary state of the hydrogen atom is identified by a triplet of quantum numbers (n, l, m).

FIGURE 42.5 The probability densities of the electron in the 1s, 2s, and 2p states of hydrogen.

The Hydrogen Atom: Wave Functions and Probabilities

The probability of finding an electron within a shell of radius r and thickness δr around a proton is

Prob(in
$$\delta r$$
 at r) = $|R_{nl}(r)|^2 \delta V = 4\pi r^2 |R_{nl}(r)|^2 \delta r = P_r(r) \delta r$

$$P_r(r) = 4\pi r^2 |R_{nl}(r)|^2$$

where the first three radial wave functions of the electron in a neutral hydrogen atom are

$$R_{1s}(r) = \frac{1}{\sqrt{\pi a_{\rm B}^{3}}} e^{-r/a_{\rm B}}$$

$$R_{2s}(r) = \frac{1}{\sqrt{8\pi a_{\rm B}^{3}}} \left(1 - \frac{r}{2a_{\rm B}}\right) e^{-r/2a_{\rm B}}$$

$$R_{2p}(r) = \frac{1}{\sqrt{24\pi a_{\rm B}^{3}}} \left(\frac{r}{2a_{\rm B}}\right) e^{-r/2a_{\rm B}}$$

FIGURE 42.6 The 1s and 2s radial wave functions of hydrogen.

FIGURE 42.8 The radial probability densities for n = 1, 2, and 3.

FIGURE 42.2 The angular momentum of an elliptical orbit.

FIGURE 42.3 The five possible orientations of the angular momentum vector for l=2. The angular momentum vectors all have length $L=\sqrt{6}\hbar=2.45\hbar$.

States with smaller *l* correspond to elliptical orbits.

Small body orbiting a central body

In astrodynamics the **orbital period** T (in seconds) of a small I body orbiting a central body in a circular or elliptical orbit is:

$$T = 2\pi \sqrt{a^3/\mu}$$

where:

- a is length of orbit's semi-major axis,
- $\mu=GM$ is the standard gravitational parameter,
- G is the gravitational constant,
- M the mass of the central body.

Note that for all ellipses with a given semi-major axis, the orbita

FIGURE 42.9 More circular orbits have larger angular momenta.

The circular orbit has the largest angular momentum.

The electron stays at a constant distance from the nucleus.

The elliptical orbit has a smaller angular momentum. Compared to the circular orbit, the electron gets both closer to and farther from the nucleus.

FIGURE 42.4 Energy-level diagram for the hydrogen atom.

Quantum number
$$l$$
 0 1 2 3

Symbol s p d f
 n $E = 0 \text{ eV} - \frac{\text{Ionization limit}}{4s} - 0.85 \text{ eV} = \frac{4s}{3s} - \frac{4p}{3p} - \frac{4d}{3d} = \frac{4f}{3d}$
 2 $-3.40 \text{ eV} = \frac{2s}{3s} - \frac{2p}{3s} = \frac{2s}{3s} - \frac{2s}{3s} = \frac{2s}{3s} - \frac{$

FIGURE 42.11 The Stern-Gerlach experiment.

FIGURE 42.10 An orbiting electron generates a magnetic moment.

A current loop generates a magnetic moment with north and south magnetic poles.

FIGURE 42.13 The outcome of the Stern-Gerlach experiment for hydrogen atoms.

The Electron's Spin

If the electron has an inherent magnetic moment, it must have an inherent angular momentum. This angular momentum is called the electron's **spin**, which is designated vector-**S**.

The z-component of this spin angular momentum is

$$S_z = m_s \hbar$$
 where $m_s = +\frac{1}{2}$ or $-\frac{1}{2}$

The quantity m_s is called the **spin quantum number.** The z-component of the spin angular momentum vector is determined by the electron's orientation. The $m_s = + \frac{1}{2}$ state, with $S_z = + \frac{1}{2}$ h-bar, is called the **spin-up** state and the $m_s = -\frac{1}{2}$ state is called the **spin-down** state. **FIGURE 42.14** The spin angular momentum has two possible orientations.

Multielectron Atoms

- When analyzing a multielectron atom, each electron is treated independently of the other electrons.
- This approach is called the **independent particle approximation**, or IPA.
- This approximation allows the Schrödinger equation for the atom to be broken into *Z* separate equations, one for each electron.
- A major consequence of the IPA is that each electron can be described by a wave function having the same four quantum numbers n, l, m, and m_s used to describe the single electron of hydrogen.
- A major difference, however, is that the energy of an electron in a multielectron atom depends on both *n* and *l*.

FIGURE 42.15 An energy-level diagram for electrons in a multielectron atom.

FIGURE 42.16 High-*l* and low-*l* orbitals in a multielectron atom.

A high-l electron corresponds to a circular orbit. It stays outside the core of inner electrons and sees a net charge of +e, so it behaves like an electron in a hydrogen atom.

FIGURE 42.16 High-*l* and low-*l* orbitals in a multielectron atom.

A low-*l* electron corresponds to an elliptical orbit. It penetrates into the core and interacts strongly with the nucleus. The electron-nucleus force is attractive, so this interaction lowers the electron's energy.

Low-*l* state

The Pauli Exclusion Principle

In 1925, Pauli hypothesized that no two electrons in a quantum system can be in the same quantum state.

In other words, no two electrons can have exactly the same set of quantum numbers n, l, n and m_s .

If one electron is present in a state, it excludes all others.

This statement, which is called the **Pauli exclusion principle**, turns out to be an extremely profound statement about the nature of matter.

FIGURE 42.22 Filling the 2p subshell with the elements boron through neon.

FIGURE 42.15 An energy-level diagram for electrons in a multielectron atom.

FIGURE 42.20 The modern periodic table of the elements, showing the atomic number Z of each.

FIGURE 42.23 Summary of the order in which subshells are filled in the periodic table.

1 <i>s</i>			1s
2 <i>s</i>			2 <i>p</i>
3 <i>s</i>			3 <i>p</i>
4 <i>s</i>		3 <i>d</i>	4 <i>p</i>
5 <i>s</i>		4 <i>d</i>	5 <i>p</i>
6 <i>s</i>	*	5 <i>d</i>	6 <i>p</i>
7 <i>s</i>	†	6 <i>d</i>	

*	4f
†	5f

Excited States and Spectra

An atom can jump from one stationary state, of energy E_1 , to a higher-energy state E_2 by absorbing a photon of frequency

 $f = \frac{\Delta E_{\text{atom}}}{h} = \frac{E_2 - E_1}{h}$

In terms of the wavelength:

$$\lambda = \frac{c}{f} = \frac{hc}{\Delta E_{\text{atom}}} = \frac{1240 \text{ eV nm}}{\Delta E \text{ (in eV)}}$$

Note that a transition from a state in which the valence electron has orbital quantum number l_1 to another with orbital quantum number l_2 is allowed only if

 $\Delta l = |l_2 - l_1| = 1$ (selection rule for emission and absorption)

FIGURE 42.28 The emission spectrum of sodium.

(a)

Lifetimes of Excited States

Consider an experiment in which N_0 excited atoms are created at time t = 0. The number of excited atoms remaining at time t is described by the exponential function

$$N_{\rm exc} = N_0 e^{-t/\tau}$$

where

$$\tau = \frac{1}{r}$$
 = the *lifetime* of the excited state

FIGURE 42.32 Three types of radiative transitions.

(a) Absorption

(b) Spontaneous emission

(c) Stimulated emission

FIGURE 42.34 Stimulated emission creates a chain reaction of photon production in a population of excited atoms.

FIGURE 42.35 Lasing takes place in an optical cavity.

The counterpropagating waves interact repeatedly with the atoms, allowing the light intensity to build up to a high level.

