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PREFACE

Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity,
quantum theory was not created—or even definitively packaged—Dby one individual,
and 1t retains to this day some of the scars of its exhilirating but traumatic youth.
There is no general consensus as to what its fundamental principles are, how it should
be taught, or what it really “means.” Every competent physicist can “do” quantum
mechanics, but the stories we tell ourselves about what we are doing are as various
as the tales of Scheherazade, and almost as implausible. Richard Feynman (one of
its greatest practitioners) remarked, “I think I can safely say that nobody understands
quantum mechanics.”

The purpose of this book is to teach you how to do quantum mechanics. Apart
from some essential background in Chapter 1, the deeper quasi-philosophical ques-
tions are saved for the end. I do not believe one can intelligently discuss what quantum
mechanics means until one has a firm sense of what quantum mechanics does. But if
you absolutely cannot wait, by all means read the Afterword immediately following
Chapter 1.

Not only is quantum theory conceptually rich, it is also technically difficult,
and exact solutions to all but the most artificial textbook examples are few and far
between. It is therefore essential to develop special techniques for attacking more
realistic problems. Accordingly, this book is divided into two parts'; Part I covers
the basic theory, and Part II assembles an arsenal of approximation schemes, with
illustrative applications. Although it is important to keep the two parts logically
separate, it 1S not necessary to study the material in the order presented here. Some
instructors, for example, may wish to treat time-independent perturbation theory
immediately after Chapter 2.

I'This structure was inspired by David Park’s classic text Introduction to the Quantum Theory, 3td
ed., (New York: McGraw-Hill, 1992).
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Preface

This book is intended for a one-semester or one-year course at the junior or
senior level. A one-semester course will have to concentrate mainly on Part I; a
full-year course should have room for supplementary material beyond Part 11. The
reader must be familiar with the rudiments of linear algebra, complex numbers, and
calculus up through partial derivatives; some acquaintance with Fourier analysis and
the Dirac delta function would help. Elementary classical mechanics is essential, of
course, and a little electrodynamics would be useful in places. As always, the more
physics and math you know the easier it will be, and the more you will get out of your
study. But I would like to emphasize that quantum mechanics is not, in my view,
something that flows smoothly and naturally from earlier theories. On the contrary,
it represents an abrupt and revolutionary departure from classical ideas, calling forth
a wholly new and radically counterintuitive way of thinking about the world. That,
indeed, is what makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly mathematical. We en-
counter Legendre, Hermite, and Laguerre polynomials, spherical harmonics, Bessel,
Neumann, and Hankel functions, Airy functions, and even the Riemann Zeta function
—not to mention Fourier transforms, Hilbert spaces, Hermitian operators, Clebsch-
Gordan coefficients, and Lagrange multipliers. Is all this baggage really necessary?
Perhaps not, but physics is like carpentry: Using the right tool makes the job easier,
not more difficult, and teaching quantum mechanics without the appropriate mathe-
matical equipment is like asking the student to dig a foundation with a screwdriver.
(On the other hand, it can be tedious and diverting if the instructor feels obliged to
give elaborate lessons on the proper use of each tool. My own instinct is to hand the
students shovels and tell them to start digging. They may develop blisters at first, but I
still think this is the most efficient and exciting way to learn.) At any rate, I can assure
you that there is no deep mathematics in this book, and if you run into something
unfamiliar, and you don’t find my explanation adequate, by all means ask someone
about it, or look it up. There are many good books on mathematical methods—I par-
ticularly recommend Mary Boas, Marhematical Methods in the Physical Sciences,
2nd ed., Wiley, New York (1983), and George Arfken, Mathematical Methods for
Physicists, 3rd ed., Academic Press, Orlando (1985). But whatever you do, don’t let
the mathematics—which, for us, is only a tool—interfere with the physics.

Several readers have noted that there are fewer worked examples in this book
than is customary, and that some important material is relegated to the problems. This
is no accident. I don’t believe you can learn quantum mechanics without doing many
exercises for yourself. Instructors should, of course, go over as many problems in
class as time allows, but students should be warned that this is not a subject about
which anyone has natural intuitions—you’re developing a whole new set of muscles
here, and there is simply no substitute for calisthenics. Mark Semon suggested that I
offer a “Michelin Guide” to the problems, with varying numbers of stars to indicate
the level of difficulty and importance. This seemed like a good idea (though, like the
quality of a restaurant, the significance of a problem is partly a matter of taste); I have
adopted the following rating scheme:
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* an essential problem that every reader should study;
*x*  asomewhat more difficult or more peripheral problem;
* x * an unusually challenging problem that may take over an hour.

(No stars at all means fast food: OK if you're hungry, but not very nourishing.) Most
of the one-star problems appear at the end of the relevant section; most of the three-star
problems are at the end of the chapter. A solution manual is available (to instructors
only) from the publisher.

I have benefited from the comments and advice of many colleagues, who sug-
gested problems, read early drafts, or used a preliminary version in their courses. I
would like to thank in particular Burt Brody (Bard College), Ash Carter (Drew Uni-
versity), Peter Collings (Swarthmore College), Jeff Dunham (Middlebury College),
Greg Elliott (University of Puget Sound), Larry Hunter (Amherst College), Mark
Semon (Bates College), Stavros Theodorakis (University of Cyprus), Dan Velleman
(Ambherst College), and all my colleagues at Reed College.

Finally, I wish to thank David Park and John Rasmussen (and their publishers)
for permission to reproduce Figure 8.6, which is taken from Park’s Introduction to the
Quantum Theory (footnote 1), adapted from L. Perlman and J. O. Rasmussen, “Alpha
Radioactivity,” in Encyclopedia of Physics, vol. 42, Springer-Verlag, 1957.
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CHAPTER 1

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to some
specified force F(x, t) (Figure 1.1). The program of classical mechanics is to deter-
mine the position of the particle at any given time: x(¢). Once we know that, we can
figure out the velocity (v = dx/dt), the momentum (p = mv), the kinetic energy
(T = (1/2)mv?), or any other dynamical variable of interest. And how do we go
about determining x (£)? We apply Newton’s second law: F' = ma. (For conservative
systems—the only kind we shall consider, and, fortunately, the only kind that occur
at the microscopic level—the force can be expressed as the derivative of a potential
energy function,! F = —aV /8x, and Newton’s law reads m d’x/dt? = —3V /dx.)
This, together with appropriate initial conditions (typically the position and velocity
at f = 0), determines x(¢).

Quantum mechanics approaches this same problem quite differently. In this
case what we’re looking for is the wave function, W (x, ¢), of the particle, and we get
it by solving the Schrodinger equation:

q0Y _ B0 e [1.1]
h— = ——— ) )
ot 2m 9x2

"Magnetic forces are an exception, but let’s not worry about them just yet. By the way, we shall
assume throughout this book that the motion is nonrelativistic (v < ¢).
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Figure 1.1: A “particle” constrained to move in one dimension under the influ-
ence of a specified force.

Here i is the square root of —1, and % is Planck’s constant—or rather, his original
constant (k) divided by 2x:

h
h=— =1.054573 x 1077 s. [1.2]
2

The Schrédinger equation plays a role logically analogous to Newton’s second law:
Given suitable initial conditions [typically, W(x, 0)], the Schridinger equation de-
termines W(x, t) for all future time, just as, in classical mechanics, Newton’s law
determines x () for all future time.

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function”, and what does it do for you once you've got
it? After all, a particle, by its nature, is localized at a point, whereas the wave function
(as its name suggests) is spread out in space (it’s a function of x, for any given time
t). How can such an object be said to describe the state of a particle? The answer is
provided by Born’s statistical interpretation of the wave function, which says that
|W (x, 1)|* gives the probability of finding the particle at point x, at time f—or, more
precisely,’

probability of finding the particle

between x and (x + dx), at time ¢. L3

W (x, )2 dx = {

For the wave function in Figure 1.2, you would be quite likely to find the particle in
the vicinity of point 4, and relatively unlikely to find it near point 5.

The statistical interpretation introduces a kind of indeterminacy into quantum
mechanics, for even if you know everything the theory has to tell you about the

*The wave function itself is complex, but | ¥1? = ¥*W (where U™ is the complex conjugate of )
is real and nonnegative—as a probability, of course, must be.
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Figure 1.2: A typical wave function. The particle would be relatively likely to be
found near 4, and unlikely to be found near B. The shaded area represents the
probability of finding the particle in the range dx.

particle (to wit: its wave function), you cannot predict with certainty the outcome
of a simple experiment to measure its position—all quantum mechanics has to offer
is statistical information about the possible results. This indeterminacy has been
profoundly disturbing to physicists and philosophers alike. Is it a peculiarity of
nature, a deficiency in the theory, a fault in the measuring apparatus, or what?

Suppose I do measure the position of the particle, and I find it to be at the point
C. Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a
sensible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was at
C, and yet quantum mechanics was unable to tell us so. To the realist, indeterminacy
is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put it, “the
position of the particle was never indeterminate, but was merely unknown to the
experimenter.””® Evidently W is not the whole story—some additional information
(known as a hidden variable) is needed to provide a complete description of the
particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it. ... We compel [the particle]
to assume a definite position.”* This view (the so-called Copenhagen interpretation)
is associated with Bohr and his followers. Among physicists it has always been the

3Bernard d’Espagnat, The Quantum Theory and Reality, Scientific American, Nov. 1979
(Vol. 241), p. 165.

4Quoted in a lovely article by N. David Mermin, Is the moon there when nobody looks?, Physics
Today, April 1985, p. 38.
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most widely accepted position. Note, however, that if it is correct there is something
very peculiar about the act of measurement—something that over half a century of
debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status of
a particle before a measurement, when the only way of knowing whether you were
right is precisely to conduct a measurement, in which case what you get is no longer
“before the measurement”? It is metaphysics (in the perjorative sense of the word) to
worry about something that cannot, by its nature, be tested. Pauli said, “One should
no more rack one’s brain about the problem of whether something one cannot know
anything about exists all the same, than about the ancient question of how many angels
are able to sit on the point of a needle.”® For decades this was the “fall-back” position
of most physicists: They’d try to sell you answer 2, but if you were persistent they’d
switch to 3 and terminate the conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had
their partisans. But in 1964 John Bell astonished the physics community by showing
that it makes an observable difference if the particle had a precise (though unknown)
position prior to the measurement. Bell’s discovery effectively eliminated agnosticism
as a viable option, and made it an experimental question whether 1 or 2 is the correct
choice. I'll return to this story at the end of the book, when you will be in a better
position to appreciate Bell’s theorem; for now, suffice it to say that the experiments
have confirmed decisively the orthodox interpretation®: A particle simply does not
have a precise position prior to measurement, any more than the ripples on a pond do;
it is the measurement process that insists on one particular number, and thereby in a
sense creates the specific result, limited only by the statistical weighting imposed by
the wave function.

But what if I made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new number
each time? On this question everyone is in agreement: A repeated measurement (on
the same particle) must return the same value. Indeed, it would be tough to prove that
the particle was really found at C in the first instance if this could not be confirmed
by immediate repetition of the measurement. How does the orthodox interpretation
account for the fact that the second measurement is bound to give the value C?
Evidently the first measurement radically alters the wave function, so that it is now
sharply peaked about C (Figure 1.3). We say that the wave function collapses upon
measurement, to a spike at the point C (W soon spreads out again, in accordance with
the Schrodinger equation, so the second measurement must be made quickly). There

*Quoted by Mermin (previous footnote), p. 40.

SThis statement is a little too strong: There remain a few theoretical and experimental loopholes,
some of which T shall discuss in the Afterword. And there exist other formulations (such as the many
worlds interpretation) that do not fit cleanly inte any of my three categories. But I think it is wise, at least
from a pedagogical point of view, to adopt a clear and coherent platform at this stage, and worry about the
alternatives later.
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Figure 1.3: Collapse of the wave function: graph of W2 immediately after a
measurement has found the particle at point C.

are, then, two entirely distinct kinds of physical processes: “ordinary” ones, in which
the wave function evolves in a leisurely fashion under the Schrédinger equation, and
“measurements”, in which W suddenly and discontinuously collapses.’

1.3 PROBABILITY

Because of the statistical interpretation, probability plays a central role in quantum
mechanics, so 1 digress now for a brief discussion of the theory of probability. It is
mainly a question of introducing some notation and terminology, and I shall do it in
the context of a simple example.

Imagine a room containing 14 people, whose ages are as follows:

one person aged 14
one person aged 15
three people aged 16
two people aged 22
two people aged 24
five people aged 25.

If we let N () represent the number of people of age j, then

TThe role of measurement in quantum mechanics is so critical and so bizarre that you may well
be wondering what precisely constitutes a measurement. Does it have to do with the interaction between
a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr insisted),
or is it characterized by the leaving of a permanent “record” (as Heisenberg claimed), or does it involve
the intervention of a conscious “observer” (as Wigner proposed)? I'll return to this thorny issue in the
Afterword; for the moment let’s take the naive view: A measurement is the kind of thing that a scientist
does in the laboratory, with rulers, stopwatches, Geiger counters, and so on.
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Now that you have (I hope) a sound understanding of what quantum mechanics says,
I should like to return to the question of what it means—continuing the story begun
in Section 1.2. The source of the problem is the indeterminacy associated with the
statistical interpretation of the wave function. For W (or, more generally, the guantum
state—it could be a spinor, for example) does not uniquely determine the outcome
of a measurement; all it provides is the statistical distribution of all possible results.
This raises a profound question: Did the physical system “actually have” the attribute
in question prior to the measurement (the so-called realist viewpoint), or did the act
of measurement itself “create” the property, limited only by the statistical constraint
imposed by the wave function (the orthodox position)—or can we duck the question
entirely, on the grounds that it is “metaphysical” (the agnostic response)?
According to the realist, quantum mechanics is an incomplete theory, for even
if you know everything quantum mechanics has to tell you about the system (to wit,
its wave function), you still cannot determine all of its features. Evidently there is
some other information, external to quantum mechanics, which (together with ¥) is
required for a complete description of physical reality. V
The orthodox position raises even more disturbing problems, for if the act of
measurement forces the system to “take a stand,” helping to create an attribute that was
not there previously,' then there is something very peculiar about the measurement
process. Moreover, to account for the fact that an immediately repeated measurement
yields the same result, we are forced to assume that the act of measurement collapses

“This may be strange, but it is not mystical, as some popularizers would like to suggest. The
so-called wave-particle duality, which Niels Bohr elevated into a cosmic principle (complementarity),
makes electrons sound like unpredictable adolescents, who sometimes behave like adults, and sometimes,
for no particular reason, like children. I prefer to avoid such language. When I say that a particle does not
have a particular attribute until a measurement intervenes, I have in mind, for example, an electron in the
spin state xy = (é ); a measurement of the x-component of its angular momentum could return the value
% /2, or (with equal probability) the value —# /2, but until the measurement is made it simply does not have
a well-defined value of S,.
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the wave function, in a manner that is difficult, at best, to reconcile with the normal
evolution prescribed by the Schridinger equation.

In light of this, it is no wonder that generations of physicists retreated to the
agnostic position, and advised their students not to waste time worrying about the
conceptual foundations of the theory.

A.1 The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen? published the famous EPR paradox, which
was designed to prove (on purely theoretical grounds) that the realist position is the
only sustainable one. I’ll describe a simplified version of the EPR paradox, due to
David Bohm. Consider the decay of the neutral pi meson into an electron and a
positron:

7% > e +et.
Assuming the pion was at rest, the electron and positron fly off in opposite directions
(Figure A.1). Now, the pion has spin zero, so conservation of angular momentum

requires that the electron and positron are in the singlet configuration:
1
V2

If the electron is found to have spin up, the positron must have spin down, and
vice versa. Quantum mechanics can’t tell you which combination you'll get, in
any particular pion decay, but it does say that the measurements will be correlated,
and you’ll get each combination half the time (on average). Now suppose we let
the electren and positron fly way off—10 meters, in a practical experiment, or, in
principle, 10 light years—and then you measure the spin of the electron. Say you get
spin up. Immediately you know that someone 20 meters (or 20 light years) away will
get spin down, if that person examines the positron.

To the realist, there’s nothing surprising in this—the electron really had spin
up (and the positron spin down) from the moment they were created—it’s just that
quantum mechanics didn’t know about it. But the “orthodox” view holds that neither
particle had either spin up or spin down until the act of measurement intervened:
Your measurement of the electron collapsed the wave function, and instantaneously
“produced” the spin of the positron 20 meters (or 20 light years) away. Einstein,
Podolsky, and Rosen considered any such “spooky action-at-a-distance” (Einstein’s
words) preposterous. They concluded that the orthodox position is untenable; the

(P =114 [A.1]

Figure A.1: Bohm’s version of the EPR
_ 0 experiment: 7° at rest decays into
e: ° F’; electron-positron pair.

2A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935),
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electron and positron must have had well-defined spins all along, whether quantum
mechanics can calculate them or not.

The fundamental assumption on which the EPR argument rests is that no in-
fluence can propagate faster than the speed of light. We call this the principle of
locality. You might be tempted to propose that the collapse of the wave function is
not instantaneous, but somehow “travels” out at some finite velocity. However, this
would lead to violations of angular momentum conservation, for if we measured the
spin of the positron before the news of the collapse had reached it, there would be a
50-50 probability of finding both particles with spin up. Whatever one might think
of such a theory in the abstract, the experiments are unambiguous: No such violation
occurs—the correlation of the spins is perfect.

A.2 Bell’'s Theorem

Einstein, Podolsky, and Rosen did not doubt that quantum mechanics is correct, as far
as it goes; they only claimed thatit is an incomplete discription of physical reality: The
wave function is not the whole story—some other quantity, A, is needed, in addition to
W, to characterize the state of a system fully. We call A the “hidden variable” because,
at this stage, we have no idea how to calculate or measure it.> Over the years, a number
of hidden variable theories have been proposed, to supplement quantum mechanics;
they tend to be cumbersome and implausible, but never mind—until 1964 the program
seemed eminently worth pursuing. But in that year J. S. Bell proved that any local
hidden variable theory is incompatible with quantum mechanics.*

Bell suggested a generalization of the EPR/Bohm experiment: Instead of ori-
enting the electron and positron detectors along the same direction, he allowed them
to be rotated independently. The first measures the component of the electron spin
in the direction of a unit vector a, and the second measures the spin of the positron
along the direction b (Figure A.2). For simplicity, let’s record the spins in units of
#/2; then each detector registers the value +1 (for spin up) or —1 (spin down), along
the direction in question. A table of results, for many 7 decays, might look like this:

electron  positron  product
+1 -1 -1

+1 +1 +1
-1 +1 ~1
+1 —1 1

-1 -1 +1

3The hidden variable could be a single number, or it could be a whole collection of numbers;
perhaps A is to be calculated in some future theory, or maybe it is for some reason of principle incalculable.
It hardly matters. All I am asserting is that there must be something—if only a list of the outcomes of
every possible experiment—associated with the system prior to a measurement.

4Bell’s original paper [Physics 1, 195 (1964)] is a gem: brief, accessible, and beautifully written.
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Figure A.2: Bell's version of the EPR-Bohm experiment: detectors independently
oriented in directions a and b.

Bell proposed to calculate the average value of the product of the spins, for a given
set of detector orientattons. Call this average P(a, b). If the detectors are parallel
(b = a), we recover the original EPRB configuration; in this case one is spin up and
the other spin down, so the product is always —1, and hence so too is the average:

P(a,a) = —1. [A.2]
By the same token, if they are anti-parallel (b = —a), then every product is +1, so
P(a, —a) = +1. [A.3]

For arbitrary orientations, quantum mechanics predicts

Pa,by=-a-b [A.4]

(see Problem 4.44). What Bell discovered is that this result is impossible in any local
hidden variable theory.

The argument is stunningly simple. Suppose that the “complete” state of the
electron/positron system is characterized by the hidden variable(s) A; A varies, in
some way that we neither understand nor control, from one pion decay to the next.
Suppose further that the outcome of the electron measurement is independent of
the orientation (b) of the positron detector—which may, after all, be chosen by the
experimenter at the positron end just before the electron measurement is made, and
hence far too late for any subluminal message to get back to the electron detector.
(This is the locality assumption.) Then there exists some function A(a, ) which
gives the result of an electron measurement, and some other function B(b, A) for the
positron measurement. These functions can only’ take on the values +1:

A(a, )y = £1; B(b, 1) = £1. [A.5]

>This already concedes far more than a classical determinist would be prepared to allow, for it aban-
dons any notion that the particles could have well-defined angular momentum vectors with simultaneously
determinate components. But never mind—the point of Bell’s argument is to demonstrate that quantum
mechanics is incompatible with any local deterministic theotry-—even one that bends over backward to be
accommodating,
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When the detectors are aligned, the results are perfectly (anti)correlated:
4(a, 1) = —B(a, 2), [A.6]

for all A.
Now, the average of the product of the measurements is

P(a,b) = [ p(A)A(a, A)B(b, 1) dA, [A.7]

where p(2) is the probability density for the hidden variable. [Like any probability
density, 1t 1s nonnegative, and satisfies the normalization condition f p(A)d) =1,
but beyond this we make no assumptions about p(1); different hidden variable the-
ories would presumably deliver quite different expressions for p.] In view of Equa-
tion A.6, we can eliminate B:

P(a,b) = — f p(A)A(a, 1) A(b, ) dA. [A.8]
If ¢ is any other unit vector,
P(a,b) — P(a,¢) = — [p(k)[A(a, M) A(b, X)) — A(a, M) A(c, A)]dr. [A9]
Or, since [A4(b, M)]? = I:
P(a,b) — P(a,¢) = — [ p(M[1— A, 1) A(c, )] A(a, A)A(b, A dh. [A.10]

But it follows from Equation A.5 that —1 < [A(a, A)A(b,))] < +1, and
p(MI[1 — A(b,2)A(c, 1)] = 0, s0

|P(a,b) — P(a, ¢)| < /p(l)[l ~ A(b, M) A(c, ] dn, [A.11]

or, more simply,

[P(a, b) — P(a, c)‘ <1+ P(b,c). [A.12]

This is the famous Bell inequality. It holds for any local hidden variable theory
(subject only to the minimal requirements of Equations A.5 and A.6), for we have
made no assumptions whatever as to the nature or number of the hidden variables or
their distribution (p).

But it is easy to show that the quantum mechanical prediction (Equation A.4)
is incompatible with Bell’s inequality. For example, suppose all three vectors lie in
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b

45’ Figure A.3: An orientation of the
45° detectors that demonstrates quantum
violations of Bell's inequality.

oy

a plane, and ¢ makes a 45° angle with a and b (Figure A.3); in this case quantum
mechanics says

P(a,b)=0, P(a,c)=P(b,c)=—-0707,
which is patently inconsistent with Bell’s inequality:
0.707 £ 1 —0.707 = 0.293.

With Bell’s modification, then, the EPR paradox proves something far more
radical than its authors imagined: If they are right, then not only is quantum mechanics
incomplete, it is downright wrong. On the other hand, if quantum mechanics is right,
then no hidden variable theory is going to rescue us from the nonlocality Einstein
considered so preposterous. Moreover, we are provided with a very simple experiment
to settle the issue once and for all.

Many experiments to test Bell’s inequality were performed in the 1960s and
1970’s, culminating in the work of Aspect, Grangier, and Roger.® The details do not
concern us here (they actually used two-photon atomic transitions, not pion decays).
To exclude the remote possibility that the positron detector might somehow “sense”
the orientation of the electron detector, both orientations were set quasi-randomly after
the photons were already in flight. The results were in excellent agreement with the
predictions of quantum mechanics and clearly incompatible with Bell’s inequality.’

Ironically, the experimental confirmation of quantum mechanics came as some-
thing of a shock to the scientific community. But not because it spelled the demise of
“realism”—most physicists had long since adjusted to this (and for those who could

SA. Aspect, P. Grangier, and G. Roger, Phys. Rev. Letr. 49, 91 (1982).

"Bell’s theorem involves averages, and it is conceivable that an apparatus such as Aspect’s contains
some secret bias which selects out a nonrepresentative sample, thus distorting the average. Recently, an
improved version of Bell’s theorem has been proposed in which a single measurement suffices to distinguish
between the quantum prediction and that of any local hidden variable theory. See D. Greenberger, M. Horne,
A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131, (1990) and N. David Mermin, Am. J. Phys. 58, 731,
(1990).
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Figure A.4: The shadow of the bug moves across the screen at a velocity v’
greater than ¢, provided that the screen is far enough away.

not, there remained the possibility of nonlocal hidden variable theories, to which
Bell’s theorem does not apply®). The real shock was the proof that nature itself is
fundamentally nonlocal. Nonlocality, in the form of the instantaneous collapse of the
wave function (and for that matter also in the symmetrization requirement for iden-
tical particles) had always been a feature of the orthodox interpretation, but before
Aspect’s experiment it was possibie to hope that quantum nonlocality was some-
how a nonphysical artifact of the formalism, with no detectable consequences. That
hope can no longer be sustained, and we are obliged to reexamine our objection to
instantaneous action at a distance.

Why are physicists so alarmed at the idea of superluminal influences? After all,
there are many things that travel faster than light. If a bug flies across the beam of a
movie projector, the speed of its shadow is proportional to the distance to the screen;
in principle, that distance can be as large as you like, and hence the shadow can move
at arbitrarily high velocity (Figure A.4). However, the shadow does not carry any
energy; Nor can it transmit any message from one point to another on the screen. A
person at point X cannot cause anything to happen at point ¥ by manipulating the
passing shadow.

On the other hand, a causal influence that propagated faster than light would
carry unacceptable implications. For according to special relativity there exist inertial
frames in which such a signal propagates backward in time—the effect preceding the
cause—and this leads to inescapable logical anomalies. (You could, for example,
arrange to kill your infant grandfather.) The question is, are the superluminal influ-
ences predicted by quantum mechanics and detected by Aspect causal, in this sense,

81t is a curious twist of fate that the EPR paradox, which assumed locality to prove realism, led
finally to the repudiation of locality and left the issue of realism undecided—the outcome (as Mermin put
it) Einstein would have liked leasr. Most physicists today consider that if they can’t have local realism,
there’s not much point in realism at all, and for this reason nonlocal hidden variable theories occupy a rather
peripheral place. Still, some authors—notably Bell himself., in Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, Cambridge, 1987)—argue that such theories offer the best hope
of bridging the gap between the measured system and the measuring apparatus, and for supplying an
intelligible mechanism for the collapse of the wave function.
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or are they somehow ethereal enough (like the motion of the shadow) to escape the
philosophical objection?

Well, let’s consider Bell’s experiment. Does the measurement of the electron
influence the outcome of the positron measurement? Assuredly it does—otherwise
we cannot account for the correlation of the data. But does the measurement of the
electron cause a particular outcome for the positron? Not in any ordinary sense of
the word. There is no way the person monitoring the electron detector could use his
measurement to send a signal to the person at the positron detector, since he does
not control the outcome of his own measurement (he cannot make a given electron
come out spin up, any more than the person at X can affect the passing shadow of
the bug). It is true that he can decide whether to make a measurement at all, but the
positron monitor, having immediate access only to data at his end of the line, cannot
tell whether the electron was measured or not. For the lists of data compiled at the
two ends, considered separately, are completely random. It is only when we compare
the two lists later that we discover the remarkable correlations. In another reference
frame, the positron measurements occur before the electron measurements, and yet
this leads to no logical paradox—the observed correlation is entirely symmetrical in
its treatment, and it is a matter of indifference whether we say the observation of
the electron influenced the measurement of the positron, or the other way around.
This is a wonderfully delicate kind of influence, whose only manifestation is a subtle
correlation between two lists of otherwise random data.

We are led, then, to distinguish two types of influence: the “causal” variety,
which produce actual changes in some physical property of the receiver, detectable by
measurements on that subsystem alone, and an “ethereal” kind, which do not transmit
energy or information, and for which the only evidence is a correlation in the data
taken on the two separate subsystems—a correlation which by its nature cannot be
detected by examining either list alone. Causal infiuences cannot propagate faster
than light, but there is no compelling reason why ethereal ones should not. The
influences associated with the collapse of the wave function are of the latter type, and
the fact that they “travel” faster than light may be surprising, but it is not, after all,
catastrophic.’

A.3 What is a Measurement?

The measurement process plays a mischievous role in quantum mechanics: It is here
that indeterminacy, nonlocality, the collapse of the wave function, and all the atten-
dant conceptual difficulties arise. Absent measurement, the wave function evolves in
a leisurely and deterministic way, according to the Schrodinger equation, and quan-
tum mechanics looks like a rather ordinary field theory [much simpler than classical

? An enormous amount has been written about Bell’s theorem. My favorite is an inspired essay
by David Mermin in Physics Today (April 1985, page 38). An extensive bibliography wilt be found in
L. E. Ballentine, Am. J. Phys. 55, 785 (1987).
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electrodynamics, for example, since there is only one field (¥), instead of two (E
and B), and it’s a scalar]. It is the bizarre role of the measurement process that gives
quantum mechanics its extraordinary richness and subtlety. But what, exactly, is a
measurement? What makes it so different from other physical processes?'® And how
can we tell when a measurement has occurred?

Schrodinger posed the essential question most starkly, in his famous cat para-

dox:!

A catis placed in a steel chamber, together with the following hellish contraption
... . Ina Geiger counter there is a tiny amount of radioactive substance, so tiny
that maybe within an hour one of the atoms decays, but equally probably none
of them decays. If one decays then the counter triggers and via a relay activates
a little hammer which breaks a container of cyanide. If one has left this entire
system for an hour, then one would say the cat is living if no atom has decayed.
The first decay would have poisoned it. The wave function of the entire system
would express this by containing equal parts of the living and dead cat.

At the end of the hour, the wave function of the cat has the schematic form
|
V2
The cat is neither alive nor dead, but rather a linear combination of the two, until a
measurement occurs—until, say, you peek in the window to check. At that moment
your observation forces the cat to “take a stand”: dead or alive. And if you find it to

be dead, then it’s really you who killed it, by looking in the window.

Schrodinger regarded this as patent nonsense, and I think most physicists would
agree with him. There is something absurd about the very idea of a macroscopic object
being in a linear combination of two palpably different states. An electron can be
in a linear combination of spin up and spin down, but a cat simply cannot be in a
linear combination of alive and dead. How are we to reconcile this with the orthodox
interpretation of quantum mechanics?

The most widely accepted answer is that the triggering of the Geiger counter
constitutes the “measurement,” in the sense of the statistical interpretation, not the
intervention of a human observer. It is the essence of a measurement that some
macroscopic system is affected (the Geiger counter, in this instance). The measure-
ment occurs at the moment when the microscopic system (described by the laws of

¥ = (Wative + Vdead)- [A.13]

10There is a school of thought that rejects this distinction, holding that the system and the measur-
ing apparatus should be described by one great big wave function which itself evolves according to the
Schridinger equation. In such theories there is no collapse of the wave function, but one must typically
abandon any hope of describing individual events—quantum mechanics (in this view) applies only to
ensembles of identically prepared systems. See, for example, Philip Pearle Am. J. Phys. 35, 742 (1967),
or, more recently, Leslie E. Ballentine, Quantum Mechanics, (Prentice Hall, Englewood Cliffs, NJ, 1990).

B, Schrodinger, Naturwiss. 48, 52 (1935); translation by Josef M. Jauch, Foundations of Quantum
Mechanics, (Reading, MA: Addison-Wesley, 1968), p. 185.
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quantum mechanics) interacts with the macroscopic system (described by the laws of
classical mechanics) in such a way as to leave a permanent record. The macroscopic
system itself is not permitted to occupy a linear combination of distinct states."

I would not pretend that this is an entirely satisfactory resolution, but at least
it avoids the stultifying solipsism of Wigner and others, who persuaded themselves
that it is the intervention of human consctousness that constitutes a measurement in
quantum mechanics. Part of the problem is the word “measurement” itself, which
certainly carries an suggestion of human involvement. Heisenberg proposed the word
“event”, which might be preferable. But I'm afraid “measurement” is so ingrained
by now that we’re stuck with it. And, in the end, no manipulation of the terminology
can completely exorcise this mysterious ghost.

A.4 The Quantum Zeno Paradox

The collapse of the wave function is undoubtedly the most peculiar feature of this
whole story. It was introduced on purely theoretical grounds, to account for the fact
that an immediately repeated measurement reproduces the same value. But surely
such a radical postulate must carry directly observable consequences. In 1977 Misra
and Sudarshan®® proposed what they called the quantum Zeno effect as a dramatic
experimental demonstration of the collapse of the wave function. Their idea was to
take an unstable system (an atom in an excited state, say) and subject it to repeated
measurements. Each observation collapses the wave function, resetting the clock,
and it is possible by this means to delay indefinitely the expected transition to the
lower state."

Specificaily, suppose a system starts out in the excited state yr,, which has a
natural lifetime t for transition to the ground state . Ordinarily, for times sub-
stantially less than t, the probability of a transition is proportional to ¢ (see Equa-
tion 9.42); in fact, since the transition rate is 1/,

t
P,y =—. [A.14]
T

If we make a measurement after a time ¢, then, the probability that the system is still
in the upper state is

Pty=1- % [A.15]

I20f course, in some ultimate sense the macroscopic system is itself described by the laws of
guantum mechanics. But wave functions, in the first instance, describe individual elementary particles; the
wave function of a macroscopic object would be a monstrously complicated composite, built out of all the
wave functions of its 10?* constituent particles. Presumably somewhere in the statistics of large numbers
macroscopic linear combinations become extremely improbable.

13B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

14This phenomenon doesn’t have much to do with Zeno, but it is reminiscent of the old adage “a
watched pot never boils,” so it is sometimes called the watched pot effect.
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Suppose we do find it to be in the upper state. In that case the wave function collapses
back to v, and the process starts all over again. If we make a second measurement,
at 2, the probability that the system is szill in the upper state is evidently

2
2
(1 _ 1) ~1- 2 [A.16]

which is the same as it would have been had we never made the measurement at z.
This is certainly what one would naively expect; if it were the whole story there would
be nothing gained by observing the system, and there would be no quantum Zeno
effect.

However, for extremely short times, the probability of a transition is not pro-
portional to ¢, but rather to ¢ (see Equation 9.39)'%:

P = at’. [A.17]

In this case the probability that the system is still in the upper state after the two

measurements is )
(1—at?)" ~1-2ar? [A.18]

whereas if we had never made the first measurement it would have been
1 —a(2t)? =~ 1 — dat’. [A.19]

Evidently our observation of the system after time ¢ decreased the net probability of
a transition to the lower state!

Indeed, if we examine the system at  regular intervals, from¢ =Qouttot =T
(that is, we make measurements at 7'/n, 2T /n, 3T /n, ..., T), the probability that
the system is still in the upper state at the end is

(1-a(@/m?) ~1- =12, [A.20]

which goes to 1 in the limit n — 00: A continuously observed unstable system never
decays at all! Some authors regard this as an absurd conclusion, and a proof that
the collapse of the wave function is fallacious. However, their argument hinges on a
rather loose interpretation of what constitutes “observation.” If the track of a particle
in a bubble chamber amounts to “continuous observation,” then the case 1s closed, for
such particles certainly do decay (in fact, their lifetime is not measureably extended
by the presence of the detector). But such a particle is only intermittently interacting
with the atoms in the chamber, and for the quantum Zeno effect to occur the successive
measurements must be made extremely rapidly to catch the system in the ¢ regime.

I5In the argument leading to linear time dependence, we assumed that the function sin®($2/2) /<
in Equation 9.39 was a sharp spike. However, the width of the “spike” is of order Aw = 4x /¢, and for
extremely short ¢ this approximation fails, and the integral becomes (¢2/4) f plwdow.
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As it turns out, the experiment is impractical for spontaneous transitions, but it
can be done using induced transitions, and the results are in excellent agreement with
the theoretical predictions.’® Unfortunately, this experiment is not as compelling a
confirmation of the collapse of the wave function as its designers hoped; the observed
effect can be accounted for in other ways."

sk sk sk sk sk 3k 3k

In this book I have tried to present a consistent and coherent story: The wave
function (¥) represents the state of a particle (or system); particles do not in general
possess specific dynamical properties (position, momentum, energy, angular mo-
mentum, etc.) until an act of measurement intervenes; the probability of getting a
particular value in any given experiment is determined by the statistical interpreta-
tion of ¥; upon measurement the wave function collapses, so that an immediately
repeated measurement is certain to yield the same result. There are other possible
interpretations—nonlocal hidden variable theories, the many worlds picture, en-
semble models, and others—but I believe this one is conceptually the simplest, and
certainly it is the one shared by most physicists today. It has stood the test of time,
and emerged unscathed from every experimental challenge. But I cannot believe this
is the end of the story; at the very least, we have much to learn about the nature of
measurement and the mechanism of collapse. And it is entirely possible that future
generations will look back, from the vantage point of a more sophisticated theory,
and wonder how we could have been so gullible.

16w, M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41,2295 (1990).

7L, E. Ballentine, Found. Phys. 20, 1329 (1990); T. Petrosky, S. Tasaki, and 1. Prigogine, Phys.
Lert. A 151, 109 (1990).



