Problem 5:
A series RLC circuit would look like

The Resonance Frequency of the circuit is given as

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

we are given that

$$
\omega_{0}>\omega
$$

The current i is given as

$$
i=I \cos (\omega t-\varphi)
$$

where φ, which can be positive or negative, is

$$
\varphi=\tan ^{-1} \frac{X_{L}-X_{C}}{R}=\frac{V_{L}-V_{C}}{V_{R}}
$$

Now $X_{L}=\omega L$ and $X_{C}=\frac{1}{\omega C}$

$$
\Rightarrow \varphi=\tan ^{-1} \frac{\omega L-\frac{1}{\omega c}}{R}
$$

$$
\begin{aligned}
&=\tan ^{-1} \frac{\omega L}{R}\left[1-\frac{1}{(\omega L(\omega C)}\right] \\
& \begin{aligned}
\text { Clearly, since } \\
\varphi<0, X_{L}<X_{C}
\end{aligned}=\tan ^{-1} \frac{\omega L}{R}\left[1-\frac{1}{\omega^{2} L C}\right] \\
& \Rightarrow I X_{L}<I X_{C} \\
& \Rightarrow V_{L}<V_{C}
\end{aligned} \quad=\tan ^{-1} \frac{\omega L}{R}\left[1-\frac{(1 / \sqrt{L C})^{2}}{\omega^{2}}\right]
$$

If $\omega_{0}>\omega, 1-\frac{\omega_{0}^{2}}{\omega^{2}}<0 \Rightarrow \varphi<0$
Hence the current leads the $\varepsilon M F$

Problem 6:

The charge on the capacitor is $Q=C \cdot v$
and the Electric-field inside is

$$
\begin{aligned}
E & =\frac{V}{L} \Rightarrow V=E \cdot L \\
\Rightarrow & Q
\end{aligned}
$$

Hence, the current $I=\frac{d Q}{d t}=C \cdot L \cdot \frac{d E}{d t}-(1)$
Now, let's consider a circular loop of radius r, passing thro' point P.

Now, we have

$$
\int_{\text {loop }} \vec{B} \cdot d \vec{s}=\mu_{0} \epsilon_{0} \frac{d \Phi_{E}^{\text {loop }}}{d t}
$$

where $\Phi_{E}^{\text {loop }}$ is the flux of the electric field through the loop in picture.

$$
\begin{aligned}
\Rightarrow B \cdot 2 \pi r & =\mu_{0} \epsilon_{0} \cdot \frac{d}{d t} E \cdot \pi r^{2} \\
& =\mu_{0} \epsilon_{0} \pi r^{2} \frac{d E}{d t}
\end{aligned}
$$

But from (1), $\frac{d E}{d t}=\frac{I}{C L}$
Hence

$$
\begin{aligned}
& B \cdot 2 \pi r=\mu_{0} \epsilon_{0} \pi r^{2} \cdot \frac{I}{C \cdot L} \\
& B=\frac{\mu_{0} \epsilon_{0} I}{C L} \cdot \frac{\gamma}{2}
\end{aligned}
$$

Now, for a paralul plate Capacitor,

$$
\begin{aligned}
C & =\frac{\epsilon_{0} A}{L}=\frac{\epsilon_{0} \pi R^{2}}{L} \\
\Rightarrow \quad B & =\frac{\mu_{0} \not t_{0} I}{\frac{\epsilon_{0} \pi R^{2}}{r} \cdot t} \cdot \frac{r}{2} \\
B & =\frac{\mu_{0} I}{2 \pi} \frac{\gamma}{R^{2}}
\end{aligned}
$$

