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Ryan’s Reference frame analysis

(a) The events in Ryan’s frame

: Explosions are simultaneous.
Burn marks are equal distances
from Ryan.

R

P “~..The waves are spheres centered
f on the burn marks because the
\ light speed of both is c.

Peggy is moving to the right.
|

The waves reach Ryan
simultaneously. The right
wave has already passed
... Peggy and been detected.
" The left wave has not arrived.

[

Light is Green since “right” firecracker light reaches detector first.



Peggy’s Reference frame Correct analysis

The right fireeracker explodas first.
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The left firecracker The rght wave reaches
explodes later. Peggy first.
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The waves reach Ryan simultaneously.
The left wave has not reached Peggy.

Ryan must detect the two waves
simultaneously. Everything flows from this
idea.

Since the wave from the right firecracker must
travel further to reach Ryan IN PEGGY’s
FRAME, it must have exploded before the left
firecracker IN PEGGY’s FRAME.

The firecrackers are NOT simultaneous in
Peggy’s frame, although they are in Ryan’s
frame

The light is green.
“simultaneity” is relative --- that is, whether

two events occur at the same time is
dependent upon your reference frame



(b) The clock is at rest in frame S’.
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FIGURE 37.21 A light clock analysis in
which the speed of light is the same in
all reference frames.

Light speed is the same
in both frames.
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(b) The clock is at rest in frame S’.
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FIGURE 37.21 A light clock analysis in
which the speed of light is the same in
all reference frames.

Light speed is the same

in both frames. Mirror
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Emission Detection

Clock moves distance vAr.
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Shortest time between ticks is in the frame
where the clock is at rest --- That is, the frame
in which the two events (emission and
detection) are measured with the same clock.
In this case, this is called the proper time and is
notated as Ar.

MORE time passes per tick in frame S in which
the clock is moving than in the stationary
frame S'.

A
At = el S AT (time dilation)
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Twin Paradox

Two twins, call them Earl and Roger:
Earlis on Earth
Roger is in Rocket

Roger takes off at relativistic velocity to Jupiter and back. Both Roger and Earl measure the
take off event and the return event with the same clock in their respective reference
frames.

Who is it that is measuring the proper time? Both Roger and Earl think they are measuring
Proper time and think that the other guy should be younger (slower clock) than
themselves.

There is another intermediary event: the rocket decelerates and accelerates to turn around
and go back to earth. Since this event is not measured by Earl with the same clock, Earl is
not measuring proper time. Roger measures proper time. Therefore Roger is younger than
Earl upon his return.

Caveat: The ‘lost’ time must be associated with the acceleration and deceleration....



Length contraction derived
from Railroad car (see pdf
Notes)



Space-time interval

FIGURE 37.28 The light clock seen by
experimenters in reference frames S’
and S”.

Light path h is the same in
in S’ both frames.
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S’ detection

S’ detection

Emission

Ax'

Axﬂ

h is invariant no matter how fast
the reference frame is moving

CZ(AII)Z _ (Axr 2 _ C?,(Atn)z . (Axu)?,

spacetime interval s

s = c2(A1)? — (Ax)?

Sis an invariant in relativity --- all observers will measure the
same spacetime interval between two events



Lorentz transformation

An event has spacetime coordinates

(x, 1) in frame §, (x1¢") in frame 5", x' = y(x — vi) x = yx" +vt')
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The Lorentz transformations transform the spacetime coordinates of one event. Com-
pare these to the Galilean transformation equations in Equations 37.1.



Lorentz velocity transformation
4 dx’
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Relativistic Momentum
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FIGURE 37.34 The speed of a particle J E(P i Whee ‘bﬂp \ﬁ_zl;
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Relativistic Energy

Let a particle of mass m move through distance Ax during a time interval Az, as
measured in reference frame S. The spacetime interval is

s = ¢*(A1)* = (Ax)? = invariant

We can turn this into an expression involving momentum if we multiply by (m/A7)?,
where A7 is the proper time (i.e., the time measured by the particle). Doing so gives

Ar)
AT
where we used p = m(Ax/A7) from Equation 37.32.

Now At, the time interval in frame S, is related to the proper time by the time-dilation
result Az = vy, A7. With this change, Equation 37.37 becomes

(mc)’

At AT

Ax)? o[ Ar)?
m ,x) _ (mc)“( ) — p? = invariant  (37.37)

(']a'prrﬂ-::}2 — p? = invariant

Finally, for reasons that will be clear in a minute, we multiply by ¢?, to get

2 _

(yymc*)* — (pc)” = invariant (37.38)



Relativistic Energy

(’}/me2)2 — (pc)* = invariant

(y,me?)” = (pe)” = (yime*)> — (p'c)’
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(Ypme®)* = (pe)® = (mc?)?
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Relativistic Energy

('ypmcz)2 — (pc)? = invariant

2 _ mc’ . l”_g 2 _ 2 r o,
Y e N \ 1 + r;z)mﬂ mc” + Zmn
Ve Vo g

New !

An inherent energy associated with the particles rest mass!
Call & " (o5t
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(ymc®)> = (pc)® = (mc?)? 4



Relativistic Energy

2
mc

) V1 = u¥c?
Dele B, LE & rest Brag, E,

E=vy

1 u’ 1

2 1 +——m::2=mcz+5mu?‘

YpHIC

Pmcz = E, + K = rest energy + kinetic energy

This total energy consists of a rest energy
E, = mc*
and a relativistic expression for the kinetic energy

K = (y, — Dmc* = (y, — 1E,

EE _ (pﬂ}i — Eﬂﬂ



State of 19th and very early 20th century physics:

Light:
1. E&M Maxwell’s equations --> waves; J. J. Thompson’s double slit experiment with light

2. Does light need a medium? --> Aether and Michelson-Moreley experiment
1 and 2 lead to Relativity, 1905

3. Detected in discrete lumps --> photoelectric effect
concept of photons

4. Black Body radiation spectrum -- Planck's proposition that energy is quantized

5. Gas discharge tube produces discrete line spectrum which depends upon atoms vs. black
body radiation (incandescence) continuous spectrum

6. Emission spectra of hydrogen fairly simple (Balmer formula)



State of 19th and early 20th century physics:

Matter:
1. J.J. Thompson measures q/m of 'cathode rays'---> crossed-field experiment

2. J. ). Thompson used Rontgen's x-rays to ionize helium, and the same g/m produced; Also e/m
from hot wire same g/m ---> g=e, atoms composed of subatomic particles called 'electrons’

3. J. J. Thompson measures the g/m ratio of hydrogen ion which is MUCH smaller than electron
4. Millikan oil drop experiment: measures discrete charge e ---> e of electron ( & m of electron)

5. Rutherford , uranium decay produces “beta rays” (high speed electrons) and “alpha rays”;
alpha rays trapped in gas discharge tube and produced same discrete spectrum as Helium +
measurement of g/m of alpha --> double ionized He ions; Uranium emitting other particles, He
and electrons

6. Rutherford’s foil experiment, fires doubly ionized He at gold foil, most go through but some
bounce back --> requires positively charged, heavy centers in gold foil --> nucleus surrounded by
'orbiting' electrons; Deduces the rough diameter of nucleus ~ 10 fm (10”*-15 m)

7.1910, J. ). Thompson develops mass spectrometer --> same element has different masses;
first evidence of 'something else' besides electrons and positively charged atoms, leading to the
discovery of neutrons



FIGURE 38.7 Thomson's crossed-field
experiment to measure the velocity of
cathode rays. The photograph shows his
original tube and the coils he used to
produce the magnetic field.
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Millikan’s Oil drop experiment: Measuring quantized q
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droplet balances the
downward gravitational force.



Millikan’s Oil drop experiment: Measuring quantized q
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J. J. Thompson’s mass spectrometer: First evidence of neutron
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J. J. Thompson’s mass spectrometer: First evidence of neutron

o A
\ = 0 - B
0 12, d
V'l
= m = - aVh = L b / [rB&J
V AV,
Iéw % = {ﬂ@‘
|
S w = /[ 1E (BB ONe
AV,
Tong with different --m__‘i
charge-to-mass
ratios are detected at
Discovery of isotopes different accelerating
v(}lrtages.
/
‘thﬁ “ T]Nt: (XIOJ




Some definitions

Definition of eV: energy required to move 1 electron across 1V =
1.6 x 107-19 ) ¢ [o7)ae

vad
@4/\Hf \/\/C %A\/ SV EV\N%: €. Q\/\ = ).é‘/op/ff

atomic number: number of electrons or protons, Z

Mass number: A=Z+N, N is the number of neutrons



Einstein’s photon postulate

M.Uﬂ}bf E_l—- @/__\2 = Ofﬂ{:zjz
Ahyﬂm'bb b’wcioy Cl {Mﬁ th/L;fC => 1= O

Note: Postulate includes that energy of E&M wave is quantized!



Proof of photons: Photoelectric effect

Quartz
window

Vacuum .
% C ’/J Incident
K light

[

Sliding contact 4+

1] | i1

Figure 1 An apparatus used to study the photoelectric
effect. The incident light falls on plate P, ejecting photoelec-
trons, which are collected by collector cup C. The photoelec-
trons move 1n the circuit in a direction opposite to that of
the conventional current arrows.
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QuIgﬁrzoof of photons: Photoelectric effect
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proof of photons: Bhotoelectric effect
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More proof of quantization of energy: Planck’s Black-body radiation
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More proof of quantlzatlon of energy: PIanck’s Black-body radiation
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More proof of quantlzatlon of energy: PIanck’s Black-body radiation
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More proof of quantization of energy: PIanck’s Black-body radiation
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De Broglie wavelength for matter — Like Einstein’s photon postulate
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Matter wave confined --- particle in a box FIGURE 25.16 A particle of mass m
confined in a box of length L.

In Chapter 21, we found that the wavelength of a standing wave is related to the

length L of the confining region by (a) A classical particle of mass m bounces back

and forth between the ends.
2L

M=o n=1234, (25.10) L
The particle must also satisfy the de Broglie condition A = h/p. Equating these two N @—
expressions for the wavelength gives
h 2L - . . . .
; - (25.11) (b) Matter waves moving in opposite directions
create standing waves.
Solving Equation 25.11 for the particle’s momentum p, we find I
f 1,2,3,4 (25.12) - o |
= n|— n=1273,4,... .
L} 1 'rr.l'
The partu.lc s energy, entirely kinetic energy, is related to its momentym by Matter waves travel
P\ in both ?‘ITCL‘.UUIIH.

E=%mv2=% (lyﬂ VA<C,

If we use Equation 25.12 for the momentum, we find that the particle’s energy 1s
restricted to the discrete values

E n’ =1,2,3,4,... 25.14
; 2m2L) smr? " O (2.14)



If we use Equation 25.12 for the momentum, we find that the particle’s energy is
restricted to the discrete values
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Bohr model of atom: Semiclassical approach to hydrogen
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FIGURE 39.20 A Rutherford hydrogen

. » 2
atom. The size of the nucleus is greatly 2
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Bohr model of atom: Semiclassical approach to hydrogen

FIGURE 39.22 The first four stationary states, or allowed

orbits, of the Bohr hydrogen atom drawn to scale.
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Bohr model of atom: Semiclassical approach to hydrogen
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Bohr model of atom: Semiclassical approach to hydrogen
Quantization of angular momentum
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Probability Density

We can define the probability density P(x) such that
Prob(in ox at x) = P(x)o0x

In one dimension, probability density has Sl units of m™.
Thus the probability density multiplied by a length yields a
dimensionless probability.

NOTE: P(x) itself is not a probability. You must multiply the
probability density by a length to find an actual probability.
The photon probability density is directly proportional to
the square of the light-wave amplitude:

A(x)|?

P(x) =
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Normalization

e A photon or electron has to land somewhere on the
detector after passing through an experimental
apparatus.

e Consequently, the probability that it will be detected at
some position is 100%.

e The statement that the photon or electron has to land
somewhere on the x-axis is expressed mathematically as

“dx = 1

J P(,r')d,r:l [ r(x)

— Y —

e Any wave function must satisfy this normalization
condition.



Wave Packets

Suppose a single nonrepeating wave packet of duration At
is created by the superposition of many waves that span a
range of frequencies Af.

Fourier analysis shows that for any wave packet

AfAf =~ 1

We have not given a precise definition of At and Af for a
general wave packet.

The quantity At is “about how long the wave packet lasts,”
while Af is “about the range of frequencies needing to be
superimposed to produce this wave packet.”
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