Solution to Problem 1\& 3, Exam III
1.

In the Earth's reference frame, the lightening strikes A and B simultaneously. The coordinates of these "events" are

A:

$$
\begin{array}{ll}
x=0, \quad t=5 \mu \mathrm{sec} & (\text { Earth }) \\
x=50 \mathrm{~km}, t=5 \mu \mathrm{sec} & (\text { Earth }
\end{array}
$$

The rocket is another reference frame, moving to the right at 0.9 C
Their origins coincide at $t=0$
The coordinates in the rocket's frame are related to those in the Earth's frame (For any event A / B)

$$
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}} ; t^{\prime}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-v^{2} / c^{2}}}
$$

Let the primed coordinates represent rocket frame and the un-primed coordinates represent Earth frame.
(a) For event A :

$$
\begin{aligned}
x_{A}^{\prime}= & {\left[0 \mathrm{~km}-0.9 \times 0.3 \frac{\mathrm{Km}}{\mu \mathrm{sec}} \times 5 \mu \mathrm{sec}\right] / \sqrt{1-(0.9)^{2}} } \\
& =\frac{-1.35 \mathrm{~km}}{\sqrt{0.19}}=-3.09 \mathrm{~km} \\
t_{A}^{\prime}= & \frac{5 \mu \mathrm{sec}-0}{\sqrt{1-(0.9)^{2}}}=11.47 \mu \mathrm{sec}
\end{aligned}
$$

Far event B

For event B

$$
\begin{aligned}
& x_{B}^{\prime}=\left[50 \mathrm{~km}-0.9 \times 0.3 \frac{\mathrm{~km}}{\mu \mathrm{sec}} \times 5 \mu \mathrm{sec}\right] / \sqrt{0.19} \\
& =\frac{48.65}{\sqrt{0.19}} \mathrm{~km}=111.61 \mathrm{~km} \\
& t_{B}^{\prime}=\left[5 \mu \mathrm{sec}-\frac{0.9 \times 0.3 \frac{\mathrm{Km}}{\mu \mathrm{sec}}}{\left(0.3 \frac{\mathrm{Km}}{\mu \mathrm{sec}}\right)^{2}} \times 50 \mathrm{~km}\right] / \sqrt{0.19} \\
& =-145 / \sqrt{0.19} \mu \mathrm{sec}=-332.65 \mu \mathrm{sec}
\end{aligned}
$$

(b)
clearly, event B occured first in the rocket frame, since $t_{B}^{\prime}<t_{A}^{\prime}$

$$
\begin{aligned}
\Delta t^{\prime}=t_{A}^{\prime}-t_{B}^{\prime} & =11.47-(-332.65) \mathrm{\mu sec} \\
& =344.12 \mathrm{\mu sec}
\end{aligned}
$$

So, the lightening strikes the pole first.
(c)

$$
\begin{aligned}
\Delta x^{\prime}=x_{B}^{\prime}-x_{A}^{\prime} & =111.61-(-3.09) \mathrm{km} \\
& =114.7 \mathrm{~km}
\end{aligned}
$$

3.

Length of each rocket, measured in its rest frame is 200 m .
(a) speed of rocket A, as measured by B is

$$
\frac{0.8+0.8}{1+(0.8)^{2}}=\frac{1.6}{1.64}=0.975 c
$$

TA solution Page 2
(b) rocket A has a rest length of 200 m . In another inertial frame, that of rocket B, which moves at a velocity $v=0.975 \mathrm{C}$, the length of rocket A would appear as

$$
\begin{aligned}
L & =\sqrt{1-\beta^{2}} l \\
& =\sqrt{1-(0.975)^{2}} \times 200=0.22 \times 200 \mathrm{~m} \\
& =44 \mathrm{~m}
\end{aligned}
$$

TA solution Page 3

