Chapter 9

Overview

The atom can be viewed in a variety of ways. From a macroscopic point of
view, the atom is the smallest entity of significance and the building blocks
of matter. From a microscopic point of view, the atom is a perplexing
composite of more basic particles of which only the electron appears to be
fundamental or elementary; the proton and neutron are composed of more
bizarre constituents. Our focus will not be at the subatomic level where the
strong and weak forces must be considered along with the electromagnetic
force nor the macroscopic and mesoscopic level involving clusters of parti-
cles but in between where the Coulomb interaction between the electrons
and the nucleus as well as between electrons and between nuclei dominant
interparticle forces of concern. We will assume the nucleus (composed of
protons and neutrons) and the electron to be the basic constituents of con-
cern. Our primary goal is to model atoms and molecules both in the absence
and presence of weak and strong external electromagnetic fields.

We will confine our discussion to three specific types of systems — one-
electron atoms, two-electron atoms and diatomic molecules. As their name
implies, the one- and two-electron atoms will involve atoms that have one
or two active electrons that spend most of their time outside a positively
charged core. We will look in some detail at the structure of these atoms
as well as the structure of diatomic and linear triatomic molecules. We will
also look at bound-bound radiative transitions and bound-free transitions
responsible for ionization, dissociation and dissociative-ionization processes.

Since there are numerous texts that cover details of the information
presented in this part, we will take the approach of giving key results with-
out detail derivation, for the most part, and direct the reader to salient
references. The goal is to present enough information for the reader to un-



2 CHAPTER 9. OVERVIEW

derstand the important concepts. The reader will necessarily have to read
additional material to become an expert.

In our discussion, we will treated the motion of the electrons and nuclei
quantum mechanically and the external field classically. Consequently, we
will seek solutions to Schrodinger’s equation,

L0 o
zhalll (7 t) = HY (7, 1), (9.1)
for specific Hamiltonians, H.

We begin our discussion by considering a hydrogen-like, one-electron
atom, in the absence of an external field. This atom will be described by a
family of stationary states of well defined energies, that can be ascertained
from the time-independent Schrodinger equation

Hy (7) = B (7). (9.2)

Equation 9.2 is obtained from Eq. 9.1 by letting W (7,t) —e~"Et/M) (7).,
The Hamiltonian is taken as the quantum mechanical analog of the classical
Hamiltonian given by T'+ V where T = p?/2m, and the potential, V (r), is
just the Coulomb potential, —Ze?/47e,r, with Z being the charge on the
nucleus (Z = 1 for neutral atoms). Since p — —ihV (see Appendix B.8),
the quantum mechanical Hamiltonian for this single-particle non-relativistic
case takes the simple form

h? V2 Ze?

H=— -
2me, Are,r’

(9.3)
where m, is the mass of the electron, e is the elementary charge, h, is
Planck’s constant divided by 27 and ¢, is the vacuum permittivity.

9.1 The Bohr Atom

Before solving Eq. 9.2 with the Hamiltonian given in Eq. 9.3, it is interesting
to see that it is possible to determine the energy spectrum classically by
assuming the existence of stationary states — Bohr’s hypothesis that the
electron does not radiate when circling the nucleus. For stationary states
to exist, the Coulomb force (—Ze?/4me,r?) must equal the centripetal force
(—mev? /7, where v is the tangential velocity). This leads to a kinetic energy

of 702
1 1 e
T =-—me? =2 .
M =3 <47r€07’> ’ (94)
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and a total energy

1 [ Ze?
E=T+V=—- . 9.5
+ 2 <47r50r> (9:5)

Here, we adopt the usual convention that negative energy means the system
is bound. Prior to the development of quantum mechanics, it was known
that atoms emitted light at specific wavelengths. In the late 19" century
it was determined that the energy of the light, in wavenumbers (see Eq. A.4
and Appendix A), associated with a transition between energy levels n and

n' was found to obeyed!?
~ 1 1
Upin =C <E - W) ) (9.6)

where C is a constant that is related to the Rydberg constant. If one further
postulates that the energy levels are quantized such that » — n?ry, where
r1 is the minimum stable radius, Eq. 9.5 becomes

1 Ze?
E,=——]. 9.7

" 2 <47r50n27“1> (9.7)
It follows that

1/ Zée? 1 1
hcﬁn/ann/—En=§< © )(———). (9.8)

4dme,r n? n/?2

If we identify the constant as

1 Ze?
€= 2he (47rsor1> ’ (9:9)

the energy spectrum for hydrogen and hydrogen-like ions 2 takes this simple
form:

1
By = —heC—. (9.10)

Since the potential is not harmonic, the energy levels are not equally spaced.
Figure 9.1 shows that the second level, the first excited state, is three-
quarters of the way to the ionization limit while subsequent levels are more
and more closely spaced.

!This general formula was proposed by Rydberg in 1889. Prior to this date, Balmer
used the empirial formula, (4/B) (1/2° —1/n?) to fit the visible hydrogen spectral lines
he observed. With n = 3,4,5,6, ..., he extracted a value of 3645.6 A for B.

2Find the reference to the Rydberg and Balmer footnote.

3Hydrogen-like ions are ions with a single electron plus the nucleus. These include H,
He™, as well as all multiply-charged ions that have all but one electron removed; Ca'®*
would be an example.
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Figure 9.1: Bound energy levels of the traditional Bohr hydrogen atom.
Redraw this in Autocad to include the continuum states. See “bohrlevels.eps”
(Bill’s attempt, I think) and Fig. 18-1 in Cowan.

It is possible to determine C by fitting the spectrum to Eq. 9.6 from
which we can estimate r;. Furthermore, it is possible to predict C, and
r1 theoretically from the Correspondence Principle.* When the radius of
the electron orbit gets large, n gets large and the circulating electron will
radiate, as any charged particle must classically, with a frequency given by

v

SrnEr (9.11)
When a classical particle radiates, it looses energy. Quantum mechanically,
radiation is accompanied by transitions between quantum levels, as implied
by Eq. 9.6. To remain classical, radiation must be between levels with large
n. Consider a transition between two adjacent levels where n’ = n + 1.
Equation 9.6 then becomes

1 1 2C
Unly, = —_ | ~—. 12
Upip =C <7’L2 (n+ 1)2> n3 (9.12)

“The Correspondence Principle states that in the limit of large sizes the quantum
description must approach the classical description
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Multiplying Eq. 9.12 by ¢, the speed of light, and equating it with Eq. 9.11,
using Eq. 9.4 to express v and Eq. 9.5 to express C, we can show that

= <4m"> I (9.13)

ez ) Zm,

from which we identify the minimum radius for Z =1

o= (22 L (9.14)

9
e2 ) me

called the Bohr radius.” The Rydberg constant, for an infinitely massive
nucleus,® is then defined as

1 e? 1 C
Roo = — = —. 9.15
4 <47r€o> hea, 72 (9:15)

The energy spectrum can then be expressed as

1/ e 72 72 1/ e \? Z%me,
E,=—|—|—5—=-h —=—|— ] —= 1
n 2 <47r50> n2a, Reoo n? 2 <47r50> n2h2’ (9.16)

which depends only on integers, Z and n, and fundamental constants.

For an infinite nuclear mass, we identify n2a, as the radius of the orbit
of the n'" state for hydrogen. This is not exact because the nucleus has
finite mass mpy. To account for this, we can let m, — p, the reduced mass
mass. The n!” radius then becomes

me n2a,  nla,
~

rp = —

w Z 7

(9.17)

assuming the nucleus has charge Z, where the reduced mass is given by
= (1/me +1/my)~L. (9.18)

If we let me — 1 in Eq. 9.16, however, we shift the energy levels requiring
the finite mass Rydberg constant to be defined as

~1
Me
=R (1 . 1
Ry =R < +MN> (9.19)

®We note that r1 = a,/Z.
5An atom with an infinite nuclear mass is sometimes called the fized nucleus or sta-
tionary nucleus atom.



A.4. ATOMIC ENERGY UNIT (HARTREE) 113

A.4 Atomic Energy Unit (Hartree)

The atomic energy (au), also know as a hartree, is e times the electric
potential associated with two elementary charges (e) separated by the Bohr
radius (a,),

h
1au=e < c > = Y0 _ 4.35074381(34) x 10718 J. (A.6)

dreya, Qo

In Eq. A6, « (E e? [4me,he ~ %7) is the fine structure constant, & is
Planck’s Constant and c is the speed of light. These units are equivalent to
setting e = h = m = 1, where m, is the electron rest mass.

A.5 Rydberg Energy Unit

The Rydberg energy units is given by
1
1Ry = 5 Hartree = 13.60569172(53) eV, (A.7)

and is the binding energy of the hydrogen atom with an infinitely massive
nucleus. This unit is equivalent to setting h = e¢?/2 = 2m, = 1. The
atomic energy unit (a.u.) and Rydberg energy unit (cm~!) are alos related:

1 au = 47hc¢R oo, (A.8)

where R is the Rydberg constant

1 €2

= _ — — 1
© 24me,ache  4mag 109737.31568549(83) cm ™. (A.9)

Reo

A.6 eV Energy Unit

Since the quantity in parentheses in Eq. A.6 has units of volts, we can also
define a new energy unit called an electron volt, eV. An atomic unit of
enery is related to the eV through:

1 au = 1 Hartree = 27.2113834(11) eV. (A.10)

The conversion between Rydberg energy unit and electron-Volt units (eV)
is:

1 eV = 8065.54477(32) cm™*. (A.11)

It is helpful to know that the NIST web site also offers a conversion factor
applet that was used here to convert from au to eV.



