Differential Form of Gauss’s Law

The integral form of Gauss’s law for electric fields and magnetic fields is given by

%E - dA = Qenclased (1)

%B-dA:O, ’ (2)

where 59 dA means to take the integral around a surface bounding a volume. The quantity dA is vector
representing a small area element of the surface; dA points away from the volume and is normal to the area
element. These equations measure the flux of electric and magnetic fields lines through the surface. A more
useful quantity, however, is the strength and direction of the flux lines at a given point. This is given by the
divergence of the E and B fields. To write down equations that will allow us to quantify these strengths,
we will change the integral equations in Egs. 1 and 2 into differential equations. To that end, we first give
a formal definition of the divergence, V-F, of a vector:

Definition 1 The divergence of a vector is the limit of its surface integral per unit volume as the volume
enclosed by the surface goes to zero.

Mathematically we write,
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The divergence is a scalar quantity defined at a point on the surface of integration.

To find an explicit form for V - F we will work in rectangular coordinates where the area and volume
elements are given by dzdy and dzdydz respectively. Consider a rectangular volume with one corner at
(Z0,Y0,20). The left-hand size of Gauss’s law applied to vector F, 39 F - dA, then can be written as:
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Here, we have assumed that the components of F point along the positive z-, y- and z-axes. Thus, we pick
up a minus sign for the faces closest to the origin. In the limit as we shrink the volume, the integrals can
be replaced by
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To evaluate these expressions consider the terms that multiplies dydz. We note that we can make a
Taylor expansion about z, for Fy (z, + dz,y, z) and write it as
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Then we write
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It is also possible to recognize that
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Using the chain rule we have
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Doing the same for the terms that multiply dzdz and dxdy we can write expression 5 in the limit of a
shrinking volume as
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Finally, putting it all together we write the divergence as
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We have dropped the subscripts because the divergence applies to all points on the surface. Gauss’s law for
the E and B field then become

V-E= gﬁ (13)
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where p is the charged enclosed per unit volume.



