19.53. Model: The heat engine follows a closed cycle. For a diatomic gas, $C_{\mathrm{V}}=\frac{5}{2} R$ and $C_{\mathrm{P}}=\frac{7}{2} R$.

Visualize: Please refer to Figure P19.53.
Solve: (a) Since $T_{1}=293 \mathrm{~K}$, the number of moles of the gas is

$$
n=\frac{p_{1} V_{1}}{R T_{1}}=\frac{\left(0.5 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(10 \times 10^{-6} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(293 \mathrm{~K})}=2.08 \times 10^{-4} \mathrm{~mol}
$$

At point $2, V_{2}=4 V_{1}$ and $p_{2}=3 p_{1}$. The temperature is calculated as follows:

$$
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \Rightarrow T_{2}=\frac{p_{2}}{p_{1}} \frac{V_{2}}{V_{1}} T_{1}=(3)(4)(293 \mathrm{~K})=3516 \mathrm{~K}
$$

At point $3, V_{3}=V_{2}=4 V_{1}$ and $p_{3}=p_{1}$. The temperature is calculated as before:

$$
T_{3}=\frac{p_{3}}{p_{1}} \frac{V_{3}}{V_{1}} T_{1}=(1)(4)(293 \mathrm{~K})=1172 \mathrm{~K}
$$

For process $1 \rightarrow 2$, the work done is the area under the $p$-versus- $V$ curve. That is,

$$
\begin{aligned}
W_{\mathrm{s}} & =(0.5 \mathrm{~atm})\left(40 \mathrm{~cm}^{3}-10 \mathrm{~cm}^{3}\right)+\frac{1}{2}(1.5 \mathrm{~atm}-0.5 \mathrm{~atm})\left(40 \mathrm{~cm}^{3}-10 \mathrm{~cm}^{3}\right) \\
& =\left(30 \times 10^{-6} \mathrm{~m}^{3}\right)(1 \mathrm{~atm})\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=3.04 \mathrm{~J}
\end{aligned}
$$

The change in the thermal energy is

$$
\Delta E_{\mathrm{th}}=n C_{\mathrm{v}} \Delta T=\left(2.08 \times 10^{-4} \mathrm{~mol}\right) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(3516 \mathrm{~K}-293 \mathrm{~K})=13.93 \mathrm{~J}
$$

The heat is $Q=W_{\mathrm{s}}+\Delta E_{\mathrm{th}}=16.97 \mathrm{~J}$. For process $2 \rightarrow 3$, the work done is $W_{\mathrm{s}}=0 \mathrm{~J}$ and

$$
\begin{aligned}
Q & =\Delta E_{\mathrm{th}}=n C_{\mathrm{v}} \Delta T=n\left(\frac{5}{2} R\right)\left(T_{3}-T_{2}\right) \\
& =\left(2.08 \times 10^{-4} \mathrm{~mol}\right) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(1172 \mathrm{~K}-3516 \mathrm{~K})=-10.13 \mathrm{~J}
\end{aligned}
$$

For process $3 \rightarrow 1$,

$$
\begin{gathered}
W_{\mathrm{s}}=(0.5 \mathrm{~atm})\left(10 \mathrm{~cm}^{3}-40 \mathrm{~cm}^{3}\right)=\left(0.5 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(-30 \times 10^{-6} \mathrm{~m}^{3}\right)=-1.52 \mathrm{~J} \\
\Delta E_{\mathrm{th}}=n C_{\mathrm{v}} \Delta T=\left(2.08 \times 10^{-4} \mathrm{~mol}\right) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(293 \mathrm{~K}-1172 \mathrm{~K})=-3.80 \mathrm{~J}
\end{gathered}
$$

The heat is $Q=\Delta E_{\mathrm{th}}+W_{\mathrm{s}}=-5.32 \mathrm{~J}$.

|  | $W_{\mathrm{s}}(\mathrm{J})$ | $Q(\mathrm{~J})$ | $\Delta E_{\mathrm{th}}$ |
| :--- | :---: | ---: | ---: |
| $1 \rightarrow 2$ | 3.04 | 16.97 | 13.93 |
| $2 \rightarrow 3$ | 0 | -10.13 | -10.13 |
| $3 \rightarrow 1$ | -1.52 | -5.32 | -3.80 |
| Net | 1.52 | 1.52 | 0 |

(b) The efficiency of the engine is

$$
\eta=\frac{W_{\text {net }}}{Q_{\mathrm{H}}}=\frac{1.52 \mathrm{~J}}{16.97 \mathrm{~J}}=0.0896=8.96 \%
$$

(c) The power output of the engine is

$$
500 \frac{\text { revolutions }}{\min } \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{W_{\text {net }}}{\text { revolution }}=\frac{500}{60} \times 1.52 \mathrm{~J} / \mathrm{s}=12.7 \mathrm{~W}
$$

Assess: For a closed cycle, as expected, $\left(W_{\mathrm{s}}\right)_{\text {net }}=Q_{\text {net }}$ and $\left(\Delta E_{\mathrm{th}}\right)_{\text {net }}=0 \mathrm{~J}$.

