19.52. Model: The heat engine follows a closed cycle with process $1 \rightarrow 2$ and process $3 \rightarrow 4$ being isochoric and process $2 \rightarrow 3$ and process $4 \rightarrow 1$ being isobaric. For a monatomic gas, $C_{\mathrm{V}}=\frac{3}{2} R$ and $C_{\mathrm{P}}=\frac{5}{2} R$.
Visualize: Please refer to Figure P19.52.
Solve: (a) The first law of thermodynamics is $Q=\Delta E_{\mathrm{th}}+W_{\mathrm{S}}$. For the isochoric process $1 \rightarrow 2, W_{\mathrm{S} 1 \rightarrow 2}=0 \mathrm{~J}$. Thus,

$$
\begin{gathered}
Q_{1 \rightarrow 2}=3750 \mathrm{~J}=\Delta E_{\mathrm{th}}=n C_{\mathrm{v}} \Delta T \\
\Rightarrow \Delta T=\frac{3750 \mathrm{~J}}{n C_{\mathrm{v}}}=\frac{3750 \mathrm{~J}}{(1.0 \mathrm{~mol})\left(\frac{3}{2} R\right)}=\frac{3750 \mathrm{~J}}{(1.0 \mathrm{~mol})\left(\frac{3}{2}\right)(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})}=301 \mathrm{~K} \\
\Rightarrow T_{2}-T_{1}=300.8 \mathrm{~K} \Rightarrow T_{2}=300.8 \mathrm{~K}+300 \mathrm{~K}=601 \mathrm{~K}
\end{gathered}
$$

To find volume V_{2},

$$
V_{2}=V_{1}=\frac{n R T_{1}}{p_{1}}=\frac{(1.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(300 \mathrm{~K})}{3.0 \times 10^{5} \mathrm{~Pa}}=8.31 \times 10^{-3} \mathrm{~m}^{3}
$$

The pressure p_{2} can be obtained from the isochoric condition as follows:

$$
\frac{p_{2}}{T_{2}}=\frac{p_{1}}{T_{1}} \Rightarrow p_{2}=\frac{T_{2}}{T_{1}} p_{1}=\left(\frac{601 \mathrm{~K}}{300 \mathrm{~K}}\right)\left(3.00 \times 10^{5} \mathrm{~Pa}\right)=6.01 \times 10^{5} \mathrm{~Pa}
$$

With the above values of p_{2}, V_{2} and T_{2}, we can now obtain p_{3}, V_{3} and T_{3}. We have

$$
\begin{gathered}
V_{3}=2 V_{2}=1.662 \times 10^{-2} \mathrm{~m}^{3} \quad p_{3}=p_{2}=6.01 \times 10^{5} \mathrm{~Pa} \\
\frac{T_{3}}{V_{3}}=\frac{T_{2}}{V_{2}} \Rightarrow T_{3}=\frac{V_{3}}{V_{2}} T_{2}=2 T_{2}=1202 \mathrm{~K}
\end{gathered}
$$

For the isobaric process $2 \rightarrow 3$,

$$
\begin{gathered}
Q_{2 \rightarrow 3}=n C_{\mathrm{p}} \Delta T=(1.0 \mathrm{~mol})\left(\frac{5}{2} R\right)\left(T_{3}-T_{2}\right)=(1.0 \mathrm{~mol})\left(\frac{5}{2}\right)(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(601 \mathrm{~K})=12,480 \mathrm{~J} \\
W_{\mathrm{S} 2 \rightarrow 3}=p_{3}\left(V_{3}-V_{2}\right)=\left(6.01 \times 10^{5} \mathrm{~Pa}\right)\left(8.31 \times 10^{-3} \mathrm{~m}^{3}\right)=4990 \mathrm{~J} \\
\Delta E_{\mathrm{th}}=Q_{2 \rightarrow 3}-W_{\mathrm{S} 2 \rightarrow 3}=12,480 \mathrm{~J}-4990 \mathrm{~J}=7490 \mathrm{~J}
\end{gathered}
$$

We are now able to obtain p_{4}, V_{4} and T_{4}. We have

$$
\begin{gathered}
V_{4}=V_{3}=1.662 \times 10^{-2} \mathrm{~m}^{3} \quad p_{4}=p_{1}=3.00 \times 10^{5} \mathrm{~Pa} \\
\frac{T_{4}}{p_{4}}=\frac{T_{3}}{p_{3}} \Rightarrow T_{4}=\frac{p_{4}}{p_{3}} T_{3}=\left(\frac{3.00 \times 10^{5} \mathrm{~Pa}}{6.01 \times 10^{5} \mathrm{~Pa}}\right)(1202 \mathrm{~K})=600 \mathrm{~K}
\end{gathered}
$$

For isochoric process $3 \rightarrow 4$,

$$
\begin{gathered}
Q_{3 \rightarrow 4}=n C_{\mathrm{v}} \Delta T=(1.0 \mathrm{~mol})\left(\frac{3}{2} R\right)\left(T_{4}-T_{3}\right)=(1.0 \mathrm{~mol})\left(\frac{3}{2}\right)(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(-602)=-7500 \mathrm{~J} \\
W_{\mathrm{s} 3 \rightarrow 4}=0 \mathrm{~J} \Rightarrow \Delta E_{\mathrm{th}}=Q_{3 \rightarrow 4}-W_{\mathrm{S}} \rightarrow 4 \\
\end{gathered}
$$

For isobaric process $4 \rightarrow 1$,

$$
\begin{gathered}
Q_{4 \rightarrow 1}=n C_{\mathrm{p}} \Delta T=(1.0 \mathrm{~mol}) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(300 \mathrm{~K}-600 \mathrm{~K})=-6230 \mathrm{~J} \\
W_{\mathrm{S} 4 \rightarrow 1}=p_{4}\left(V_{1}-V_{4}\right)=\left(3.00 \times 10^{5} \mathrm{~Pa}\right) \times\left(8.31 \times 10^{-3} \mathrm{~m}^{3}-1.662 \times 10^{-2} \mathrm{~m}^{3}\right)=-2490 \mathrm{~J} \\
\Delta E_{\mathrm{th}}=Q_{4 \rightarrow 1}-W_{\mathrm{S} 4 \rightarrow 1}=-6230 \mathrm{~J}-(-2490 \mathrm{~J})=-3740 \mathrm{~J}
\end{gathered}
$$

	$W_{\mathrm{S}}(\mathrm{J})$	$Q(\mathrm{~J})$	$\Delta E_{\mathrm{th}}(\mathrm{J})$
$1 \rightarrow 2$	0	3750	3750
$2 \rightarrow 3$	4990	12,480	7490
$3 \rightarrow 4$	0	-7500	-7500
$4 \rightarrow 1$	-2490	-6230	-3740
Net	2500	2500	0

(b) The thermal efficiency of this heat engine is

$$
\eta=\frac{W_{\text {out }}}{Q_{\mathrm{H}}}=\frac{W_{\text {out }}}{Q_{1 \rightarrow 2}+Q_{2 \rightarrow 3}}=\frac{2500 \mathrm{~J}}{3750 \mathrm{~J}+12,480 \mathrm{~J}}=0.154=15.4 \%
$$

Assess: For a closed cycle, as expected, $\left(W_{\mathrm{s}}\right)_{\text {net }}=Q_{\text {net }}$ and $\left(\Delta E_{\mathrm{th}}\right)_{\text {net }}=0 \mathrm{~J}$

