




Course PHYSICS260 

Assignment 4 

Due at 11:00pm on Wednesday, February 27, 2008 

   
A Simple Introduction to Interference 

Description: Interference is discussed for pulses on strings and then for sinusoidal 
waves. 
Learning Goal: To understand the basic principles underlying interference. 
One of the most important properties of waves is the principle of superposition. The 
principle of superposition for waves states that when two waves occupy the same 
point, their effect on the medium adds algebraically. So, if two waves would 
individually have the effect "+1" on a specific point in the medium, then when they are 
both at that point the effect on the medium is "+2." If a third wave with effect "-2" 
happens also to be at that point, then the total effect on the medium is zero. This idea 
of waves adding their effects, or canceling each other's effects, is the source of 
interference. 

First, consider two wave pulses on a string, approaching each other. 

 

Assume that each moves with speed meter per second. The figure shows the string at 
time . The effect of each wave pulse on the string (which is the medium for these 
wave pulses) is to displace it up or down. The pulses have the same shape, except for 
their orientation. Assume that each pulse displaces the string a maximum of meters, 
and that the scale on the x axis is in meters. 

Part A  



At time , what will be the displacement at point ? 
Express your answer in meters, to two significant figures. 
ANSWER:     =          

Part B  

Choose the picture that most closely represents what the rope will actually look like 
at time . 

 
ANSWER: 

 

A
B
C
D 

 

  
The same process of superposition is at work when we talk about continuous waves 
instead of wave pulses. Consider a sinusoidal wave as in the figure. 

 
Part C  



How far to the left would the original sinusoidal wave have to be shifted to give a 
wave that would completely cancel the original? The variable in the picture denotes 
the wavelength of the wave. 
Express your answer in terms of . 
ANSWER: 

    =    
  

  
Part D  

In talking about interference, particularly with light, you will most likely speak in 
terms of phase differences, as well as wavelength differences. In the mathematical 
description of a sine wave, the phase corresponds to the argument of the sine 

function. For example, in the function , the value of at a particular 
point is the phase of the wave at that point. Recall that in radians a full cycle (or a full 
circle) corresponds to radians. How many radians would the shift of half a 
wavelength from the previous part correspond to? 
Express your answer in terms of . 
ANSWER:    phase difference =    radians  

Part E  

The phase difference of radians that you found in the previous part provides a 
criterion for destructive interference. What phase difference corresponds to 
completely constructive interference (i.e., the original wave and the shifted wave 
coincide at all points)? 

Express your answer as a number in the interval . 
ANSWER:    phase difference =    radians  

Part F  

Since sinusoidal waves are cyclical, a particular phase difference between two waves 
is identical to that phase difference plus a cycle. For example, if two waves have a 

phase difference of , the interference effects would be the same as if the two waves 

had a phase difference of . The complete criterion for constructive interference 
between two waves is therefore written as follows: 

 

Write the full criterion for destructive interference between two waves. 

Express your answer in terms of and . 



ANSWER:    phase difference =       
The phase for a plane wave is a somewhat complicated expression that depends on 
both position and time. For most interference problems, you will work at a specific 
time and with coherent light sources, so that only geometric considerations are 
relevant. Consider two light rays propagating from point A to point B in the figure, 

which are apart. One ray follows a straight path, and the other travels at a angle 
to that path and then reflects off a plane surface to point B. Both rays have wavelength 

.  
Part G  

Find the phase difference between these two rays at point B. 
Part G.1 Find the difference in distance 
Find the difference in length between the direct path and the reflected path. You can 
use the fact that triangle ABC is an equilateral triangle. 
Express your answer in terms of . 
ANSWER: 

   path length difference =
   

Now that you have the difference in path length, convert that to radians. Recall that 
every cycle of radians is equivalent to one wavelength. 
Express your answer in terms of . 
ANSWER: 

   phase difference =
  

 radians
  

Part H  

Suppose that the reflected ray receives an extra half-cycle phase shift when it reflects. 
What is the new phase shift at point B? 



Hint H.1 How many radians in a half cycle? 

Since radians corresponds to a full cycle, a half cycle must correspond to 
radians. 
Express your answer in terms of . 
ANSWER: 

   phase difference =   

   

 radians

 
Whenever light reflects from a transparent interface, moving from lower index of 
refraction to higher index of refraction, it gets an extra half cycle phase difference. 
Being able to accurately find the phase differences between waves at various points 
will be useful in both interference and diffraction problems.  
   

Normal Modes and Resonance Frequencies 

Description: Multiple choice questions about the definition and origin of normal 
modes. Then compute the frequency and wavelength of the first three normal modes in 
a string. 
Learning Goal: To understand the concept of normal modes of oscillation and to 
derive some properties of normal modes of waves on a string. 

A normal mode of a closed system is an oscillation of the system in which all parts 
oscillate at a single frequency. In general there are an infinite number of such modes, 
each one with a distinctive frequency and associated pattern of oscillation. 

Consider an example of a system with normal modes: a string of length held fixed at 
both ends, located at and . Assume that waves on this string propagate with 
speed . The string extends in the x direction, and the waves are transverse with 
displacement along the y direction. 

In this problem, you will investigate the shape of the normal modes and then their 
frequency. 

The normal modes of this system are products of trigonometric functions. (For linear 
systems, the time dependance of a normal mode is always sinusoidal, but the spatial 
dependence need not be.) Specifically, for this system a normal mode is described by 

 

Part A  



The string described in the problem introduction is oscillating in one of its normal 
modes. Which of the following statements about the wave in the string is correct? 
Hint A.1 Normal mode constraints 
The key constraint with normal modes is that there are two spatial boundary 

conditions, and , which correspond to the string being fixed at 
its two ends. 

ANSWER: 

 

The wave is traveling in the +x direction.
The wave is traveling in the -x direction.
The wave will satisfy the given boundary conditions for any 
arbitrary wavelength .
The wavelength can have only certain specific values if the 
boundary conditions are to be satisfied.

The wave does not satisfy the boundary condition .   
Part B  

Which of the following statements are true? 
ANSWER: 

 

The system can resonate at only certain resonance frequencies 

and the wavelength must be such that .
must be chosen so that the wave fits exactly on the string.

Any one of or or can be chosen to make the solution a 
normal mode.  

The key factor producing the normal modes is that there are two spatial boundary 

conditions, and , that are satisfied only for particular values of 
. 

Part C  

Find the three longest wavelengths (call them , , and ) that "fit" on the string, 
that is, those that satisfy the boundary conditions at and . These longest 
wavelengths have the lowest frequencies. 
Hint C.1 How to approach the problem 
The nodes of the wave occur where  

. 

This equation is trivially satisfied at one end of the string (with ), since 

.  



The three largest wavelengths that satisfy this equation at the other end of the string 

(with ) are given by , where the are the three smallest, nonzero 

values of that satisfy the equation . 

Part C.2 Values of that satisfy  
The spatial part of the normal mode solution is a sine wave. Find the three smallest 

(nonzero) values of (call them , , and ) that satisfy . 
Express the three nonzero values of as multiples of . List them in increasing 
order, separated by commas. 
ANSWER: 

   , ,  =

          
          
         
         
         
         
        
          

Hint C.3 Picture of the normal modes 
Consider the lowest four modes of the string as shown in the figure. 

 
The letter N is written over each of the nodes defined as places where the string 
does not move. (Note that there are nodes in addition to those at the end of the 
string.) The letter A is written over the antinodes, which are where the oscillation 
amplitude is maximum. 

Express the three wavelengths in terms of . List them in decreasing order of length, 



separated by commas. 
ANSWER: 

   , ,  =          
The procedure described here contains the same mathematics that leads to 
quantization in quantum mechanics. 

Part D  

The frequency of each normal mode depends on the spatial part of the wave function, 
which is characterized by its wavelength .  

Find the frequency of the ith normal mode. 

Hint D.1 Propagation speed for standing waves 

Your expression will involve , the speed of propagation of a wave on the string. Of 
course, the normal modes are standing waves and do not travel along the string the 
way that traveling waves do. Nevertheless, the speed of wave propagation is a 
physical property that has a well-defined value that happens to appear in the 
relationship between frequency and wavelength of normal modes. 

Hint D.2 Use what you know about traveling waves 
The relationship between the wavelength and the frequency for standing waves is 
the same as that for traveling waves and involves the speed of propagation . 

Express in terms of its particular wavelength and the speed of propagation of the 
wave . 
ANSWER: 

    =       
The frequencies are the only frequencies at which the system can oscillate. If the 
string is excited at one of these resonance frequencies it will respond by oscillating in 

the pattern given by , that is, with wavelength associated with the at which 
it is excited. In quantum mechanics these frequencies are called the eigenfrequencies, 
which are equal to the energy of that mode divided by Planck's constant . In SI 

units, Planck's constant has the value  

Part E  

Find the three lowest normal mode frequencies , , and . 
Express the frequencies in terms of , , and any constants. List them in increasing 
order, separated by commas. 



ANSWER: 
   , ,  =

         
Note that, for the string, these frequencies are multiples of the lowest frequency. For 
this reason the lowest frequency is called the fundamental and the higher frequencies 
are called harmonics of the fundamental. When other physical approximations (for 
example, the stiffness of the string) are not valid, the normal mode frequencies are 
not exactly harmonic, and they are called partials. In an acoustic piano, the highest 
audible normal frequencies for a given string can be a significant fraction of a 
semitone sharper than a simple integer multiple of the fundamental. Consequently, 
the fundamental frequencies of the lower notes are deliberately tuned a bit flat so that 
their higher partials are closer in frequency to the higher notes.  
   

Thin Film (Oil Slick) 
Description: This problem explores thin film interference for both transmission and 
reflection. 
A scientist notices that an oil slick floating on water when viewed from above has 
many different rainbow colors reflecting off the surface. She aims a spectrometer at a 
particular spot and measures the wavelength to be 750 (in air). The index of 
refraction of water is 1.33. 
Part A  

The index of refraction of the oil is 1.20. What is the minimum thickness of the oil 
slick at that spot? 
Hint A.1 Thin-film interference 
In thin films, there are interference effects because light reflects off the two different 
surfaces of the film. In this problem, the scientist observes the light that reflects off 
the air-oil interface and off the oil-water interface. Think about the phase difference 
created between these two rays. The phase difference will arise from differences in 
path length, as well as differences that are introduced by certain types of reflection. 
Recall that if the phase difference between two waves is (a full wavelength) then 
the waves interfere constructively, whereas if the phase difference is (half of a 
wavelength) the waves interfere destructively. 

Hint A.2 Path-length phase difference 
The light that reflects off the oil-water interface has to pass through the oil slick, 
where it will have a different wavelength. The total "extra" distance it travels is 
twice the thickness of the slick (since the light first moves toward the oil-water 
interface, and then reflects back out into the air). 

Hint A.3 Phase shift due to reflections 
Recall that when light reflects off a surface with a higher index of refraction, it gains 
an extra phase shift of radians, which corresponds to a shift of half of a 



wavelength. What used to be a maximum is now a minimum! Be careful, though; if 
two beams each reflect off a surface with a higher index of refraction, they will both 
get a half-wavelength shift, canceling out that effect. 

Express your answer in nanometers to three significant figures. 

750 625
1.20oil

n n
nm nm

air air oil oil

air
oil air

n
n

λ λ=

=

2 oilt n

λ λ= =
 

λ= , where n is an integer. 
When n=1, t has minimum value 

313
2
oilt nmλ

= =  

ANSWER:     =          
Part B  

Suppose the oil had an index of refraction of 1.50. What would the minimum 
thickness be now? 
Hint B.1 Phase shift due to reflections 
Keep in mind that when light reflects off a surface with a higher index of refraction, 
it gains an extra shift of half of a wavelength. What used to be a maximum is now a 
minimum! Be careful, though; if two beams reflect, they will both get a half-
wavelength shift, canceling out that effect. Also, reflection off a surface with a 
lower index of refraction yields no phase shift. 
Express your answer in nanometers to three significant figures. 

75air
oil air

n
n

λ λ= =
0 500

1.50oil

nm nm=

2 ( 1/ 2) oilt n

 

λ= +  where n is an integer. 
When n=0, t has minimum value 

125
4
oilt nmλ

= =  

ANSWER:     =          
Part C  

Now assume that the oil had a thickness of 200 and an index of refraction of 1.5. 
A diver swimming underneath the oil slick is looking at the same spot as the scientist 
with the spectromenter. What is the longest wavelength of the light in water that 
is transmitted most easily to the diver?  
Hint C.1 How to approach the problem 
For transmission of light, the same rules hold as before, only now one beam travels 
straight through the oil slick and into the water, while the other beam reflects twice 



(once off the oil-water interface and once again off the oil-air interface) before being 
finally transmitted to the water. 

Part C.2 Determine the wavelength of light in air 
Find the wavelength of the required light in air. 
Express your answer numerically in nanometers. 
The wave most easily transmitted into the water is the one most hard to reflect out 
of the water, i.e., find out the wave that has destructive effect with its reflected 
wave.  
 
Also note that index of refraction for oil is1.5, water is 1.33, so it gains an extra shift 
of half of a wavelength while reflecting on the air-water interface. 
 
2 / /1.50oil air air oil airt k kn n kλ λ λ= = =

=1.50*2 600air t nm

, where n is an integer.  
The longest wavelength in air is for k=1. 
λ =  
 
ANSWER:     =        
Hint C.3 Relationship between wavelength and index of refraction 

There is a simple relationship between the wavelength of light in one medium 
(with one index of refraction ) and the wavelength in another medium (with a 
different index of refraction ): 

. 
Express your answer in nanometers to three significant figures. 
ANSWER:     =       
This problem can also be approached by finding the wavelength with the minimum 
reflection. Conservation of energy ensures that maximum transmission and minimum 
reflection occur at the same time (i.e., if the energy did not reflect, then it must have 
been transmitted to conserve energy), so finding the wavelength of minimum 
reflection must give the same answer as finding the wavelength of maximum 
transmission. In some cases, working the problem one way may be substantially 
easier, so you should keep both approaches in mind.  

   
Two Loudspeakers in an Open Field 

Description: Determine if constructive interference occurs at a certain point and then 
find the shortest distance you need to walk in order to experience destructive 
interference. 
Imagine you are in an open field where two loudspeakers are set up and connected to 



the same amplifier so that they emit sound waves in phase at 688 . Take the speed 

of sound in air to be 344 . 
Part A  

If you are 3.00 from speaker A directly to your right and 3.50 from speaker B 
directly to your left, will the sound that you hear be louder than the sound you would 
hear if only one speaker were in use? 
Hint A.1 How to approach the problem 
The perceived loudness depends on the amplitude of the sound wave detected by 
your ear. When two sound waves arrive at the same region of space they overlap, 
and interference occurs. The resulting wave has an amplitude that can vary 
depending on how the two waves interfere. If destructive interference occurs, the 
total wave amplitude is zero and no sound is perceived; if constructive interference 
occurs, the total wave amplitude is twice the amplitude of a single wave, and sound 
is perceived as louder than what it would be if only one wave reached your ear. 

Hint A.2 Constructive and destructive interference 
Constructive interference occurs when the distances traveled by two sound waves 
differ by a integer number of wavelengths. If the difference in paths is equal to any 
half-integer number of wavelengths, destructive interference occurs. 

Part A.3 Find the wavelength of the sound 

What is the wavelength of the sound emitted by the loudspeakers? 
Hint A.3.a Relationship between wavelength and frequency 

In a periodic wave, the product of the wavelength and the frequency is the 
speed at which the wave pattern travels; that is,  

. 
Express your answer in meters. 
ANSWER: 

    =    
    

  
ANSWER: 

 yes
no 

 
  

Part B  

What is the shortest distance you need to walk forward to be at a point where you 
cannot hear the speakers? 
Hint B.1 How to approach the problem 
You will not be able to hear the speakers if you are at a point of destructive 
interference. At a point of destructive interference, the lengths of the paths traveled 



by the sound waves differ by a half-integer number of wavelengths. Therefore, you 
can find the shortest distance you need to walk in the forward direction by 
determining the difference in distance from the two speakers that corresponds to the 
smallest possible half-integer multiple of the wavelength. Then, figure out how far 
forward you need to walk to obtain this path-length difference. 

Part B.2 Find the path-length difference at a point of destructive interference 

If is the distance between you and speaker A and is the distance between you 
and speaker B, by how much does differ from if you are now at the closest 
possible point of destructive interference? 
Hint B.2.a Condition for destructive interference 
Destructive interference occurs if the difference in paths traveled by sound waves 
is equal to any half-integer number of wavelengths. Therefore, the closest possible 
point of destructive interference corresponds to a path-length difference of half a 
wavelength. 
Express your answer in meters. 
ANSWER: 

    =    
  

 
Now combine this result with the Pythagorean Theorem and solve for . 

Part B.3 Find your distance from speaker A  

If initially you were 3.00 from speaker A and then you walked forward the 
shortest possible distance needed to experience destructive interference, what is 
your new distance from that same speaker? 
Hint B.3.a Geometrical considerations 
Geometrically, your initial distance from one speaker and the distance you walked 
north represent the legs of a right triangle, whose hypothenuse is your new distance 
from that same speaker. If you apply the Pythagorean Theorem twice, you can 
write an expression that links to . This equation, combined with the relation 
previously found by imposing the condition of destructive interference, allows you 
to find . 

2 2 2 23.5 3 0.25d d+ − + =  
d=5.625m 
Express your answer in meters to four significant figures. 
ANSWER:     =        

Express your answers in meters to three significant figures. 
ANSWER: 

    =
   
   

    
   



   
Problem 21.75 

Description: A flutist assembles her flute in a room where the speed of sound is 340 
m/s. When she plays the note A, it is in perfect tune with a 440 Hz tuning fork. After a 
few minutes, the air inside her flute has warmed to where the speed of sound is v_2.  
Part A  

How many beats per second will she hear if she now plays the note A as the tuning 
fork is sounded? 

1. Flute frequency in air 1
340 440f Hz Hz
λ

= =  340
440

mλ =  

2. Flute frequency in air 2
2

vf Hz
λ

=  

Beats frequency ( )22
2 1

340 440340
340beat

vvf f f
λ

− ⋅−
= − = =  

 
ANSWER: 

  
  

 beats
  

Part B  

How far does she need to extend the "tuning joint" of her flute to be in tune with the 
tuning fork? 
Assuming after extending the tuning joint the wavelength of note A traveling in 
room2 is 

2 2

1

'
440

v v m
f

λ = =  

The original wavelength of note A is 
340
440

mλ =  

2 3402 '
440 440
vL mλ λ λ ⎛ ⎞Δ = Δ = − = −⎜ ⎟

⎝ ⎠
 

2 340
440 440 *1000

2

v

L mm

⎛ ⎞−⎜ ⎟
⎝ ⎠Δ =  

ANSWER: 
  

   
 mm

   
   

Problem 21.40 

Description: A violinist places her finger so that the vibrating section of a mu string 



has a length of L, then she draws her bow across it. A listener nearby in a 20 degree(s) 
C room hears a note with a wavelength of lambda. (a) What is the tension in the 
string? 

A violinist places her finger so that the vibrating section of a 1.30  string has a 
length of 40.0 , then she draws her bow across it. A listener nearby in a room 
hears a note with a wavelength of 50.0 . 
Part A  

What is the tension in the string? 
The fundamental frequency of a vibrating string is  

1
2

T
L

f
μ

=  

 
Wave traveling in the room where the listener stays 

 vf
λ

=

( )

 

Therefore, 
2 2

2 3432 2 2vT Lf L Lμ μ μ
λ λ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

ANSWER: 
  

   
 N

   
   

Problem 21.53 

Description: A L_1-long wire with a linear density of mu passes across the open end 
of an L_2-long open-closed tube of air. If the wire, which is fixed at both ends, 
vibrates at its fundamental frequency, the sound wave it generates excites the second 
vibrational mode of the tube of air. What is the tension in the wire? 

A 21.0 -long wire with a linear density of 10.0  passes across the open end of 
an 84.0 -long open-closed tube of air. If the wire, which is fixed at both ends, 
vibrates at its fundamental frequency, the sound wave it generates excites the second 
vibrational mode of the tube of air. What is the tension in the wire? 
Part A  

Assume . 
The fundamental frequency of the wire is  

1

1
2

Tf
L

=
μ

 

The second vibration of the open-closed tube of air is 

2
2

3
4

vf f
L

= = 2
2

3
4

vf f
L

= =  



( )
2

2
1 1

2

3 3402 2
4

T L f L
L

μ μ
⎛ ⎞⋅

= = ⎜ ⎟
⎝ ⎠

 

ANSWER: 
  

  
 N

   
   

Problem 21.61 

DescriptionTwo loudspeakers emit sound waves along the x-axis. A listener in front 
of both speakers hears a maximum sound intensity when speaker 2 is at the origin and 
speaker 1 is at 0.480 . If speaker 1 is slowly moved forward, the sound intensity 
decreases and then increases, reaching another maximum when speaker 1 is at 
0.890 . 
Part A  

What is the frequency of the sound? Assume . 
Assuming the listener is at position s on the x-axis. 

1s x mλ− =  

( )2 1s x m λ− = −  

2 1x x λ− = =
340 /v m s

f f
=  

2 1

340f Hz
x x

=
−

 

ANSWER: 
  

   
 Hz  

  
Part B  

What is the phase difference between the speakers? 
Consider while speaker1 is at x1. 

1
2 2xπ ϕ+ Δ = π
λ

 

Phase difference 1
1

2 1

22 - 2 (1- )xπ x rad
x x

ϕ π π
λ

= =
−

 

ANSWER: 
  

  
 rad
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