Homework # 14: Gauss's Law.

Textbook problems to solve

28.39, 28.48, 28.53 (4 points each) (**EXPLAIN ALL YOUR STEPS**! Answers that do not have explanations will get only half the credit)

Additional problem: (12 points)

- 1. An infinite non-conducting cylinder of radius a has a linear charge density of  $\lambda$  and a volume charge density that depends on radius according to the relation:  $\rho(r) = \rho_o r$ , and is surrounded by a conducting cylinder of inner radius b and outer radius c carrying a net charge or -2  $\lambda$ .
  - a. Using gauss' law:  $\int E \cdot da = Q_{in}/\epsilon_o$ , find the electric field everywhere (i.e., in the regions 0 < r < a, a < r < b, b < r < c, r > c.). Explain all your steps that you use to simplify the left hand side of gauss' law for the case 0 < r < a. Explain all the steps used in simplifying the right side of gauss' law in all four cases. (hint: use  $Q_{in} = \int \rho dV$ , for spatially varying densities. Express dV in the context of a cylinder).
  - b. Consider a length L of the inner non-conducting cylinder. The cylinder should have the same charge whether you consider  $Q=\lambda L$  or  $Q=\int \rho dV$ . Derive a relationship between the linear charge density  $\lambda$  and  $\rho_o$ .
  - c. Draw a graph of *E vs r*. Explain the dependence on radius. Make sure to label all important points on your graph. Verify that you get the same electric field at a whether you use the expression for 0 < r < a or a < r < b. (Use the relationship between  $\lambda$  and  $\rho_o$  derived in part b for showing this).
  - d. Find the linear charge density and the surface charge density on the inner and outer surfaces of the cylinder in terms of  $\lambda$ . (Explain all your steps)