
Lecture 22

• Electric potential: inside capacitor; of point 
charge; of many charges

• chapter 30 (Potential and Field)



Electric Potential inside a Parallel Plate Capacitor

•            due to source charges on plates

• potential difference:

• electric field vectors      to (imaginary) equipotential surfaces/
contour lines; potential decreases along direction of E

• choice of zero of potential (                     ): no physical difference 

E = η
ε0

Uelec = Uq+sources = qEs ⇒

∆Vc = V+ − V− = Ed; E = ∆Vc
d ( 1 N/C = 1 V/m )

V = ∆VC
d (d− x) (decreases from positive to negative plate)

V+ or V− = 0 or...

⊥



Electric Potential of Point Charge; Charged Sphere

• 4 graphical representations

• Outside sphere (same as point 
charge at center):

• In terms of potential at surface, 

Uq+q′ = qq′

4πε0r ⇒

(scalar vs. vector E ∝ 1/r2)

V = 1
4πε0

Q
r ; r ≥ R

V0 = V (at r = R) = Q
4πε0R :

Q = 4πε0RV0 and V = R
r V0



Electric Potential of Many Charges

• Principle of superposition (like for E):

• Continuous distribution of charge (like for E, easier due to scalar)

model as simple shape, uniform charge distribution

draw picture...identify P where V to be calculated...

divide Q into       (shapes for which V known)∆Q

V =
∑

i
1

4πε0
qi

ri

V =
∑

i Vi

∆Q→ charge density ×dx
Sum → integral



Potential of Ring of Charge
ri same for all charge segments
V =

∑N
i=1 Vi =

∑N
i=1

1
4πε0

∆Q
ri

= 1
4πε0

1√
R2+z2

∑N
i=1 ∆Q

No need for integral:
∑N

i=1 ∆Q = Q ⇒
V ring on axis = 1

4πε0
Q√

R2+z2

Check: z " R ⇒ Vring ≈ Q/ (4πε0z)
(point charge, as expected)



Potential of Disk of Charge
uniform surface charge density η = Q/A = Q/

(
πR2

)

Use potential of ring Vi = 1
4πε0

∆Qi√
r2

i +z2

V =
∑

i=1 Vi = 1
4πε0

∑N
i=1

∆Q√
r2

i +z2

∆Qi = η∆Ai; ∆Ai = 2πri∆r

V = 1
4πε0

∑N
i=1

2Q
R2

ri∆ri√
r2

i +z2
→ Q

2πε0R2

∫ R
0

rdr√
r2+z2

Charge of variables: u = r2 + z2... Vdisk on axis = Q
2πε0R2

(√
R2 + z2 − z

)



Chapter 30 (Potential and Field)
• calculate V from E and vice versa (E and V not independent, two 

different mathematical representations of how source charges 
alter space around them); geometry of E and V

• sources of potential (batteries); capacitors; currents in wires 
(chapter 31) and Electric Circuits (chapter 32)

• Finding Potential from Electric Field

• Uniform E:

• Choose zero point of potential to                                        
assign V (often at     )

Using (i) V = Uq+sources/q;
(ii) ∆U = −W (i→ f) = −

∫ sf

si
Fsds and

(iii) F̄ = qĒ ⇒

∆V = −Es∆s

∞



Finding Potential from 
Electric Field

• Point Charge

• Disk of Charge

∆V = V (∞)− V (r) = −
∫∞

r Erdr
with Er = 1

4πε0
q
r2 and V (∞) = 0 ⇒

V (r) = q
4πε0

∫∞
r

dr
r2 = 1

4πε0
q
r (as before)

E = Q
2πR2ε0

[
1− z

(z2+R2)1/2

]

with V (∞) = 0 ⇒
V (z) =

∫∞
z Ez(z)dz

= Q
2πR2ε0

∫∞
z

[
1− z

(z2+R2)1/2

]
dz

Charge of variables; u = z2 + R2...
Vdisk = Q

2πR2ε0

(√
z2 + R2 − z

)

(as before)



Sources of 
Potential

• Need to “lift” charge to sustain      and 
current

• van de Graff generator (mechanical)

• Batteries (electrodes with chemicals in-
between): work done by chemical 
reactions per unit charge (emf)                   
ideal battery: ∆U = Wchem ⇒ ∆Vbat = E

E = Wchem
q

∆V

∆Vseries = ∆V1 + ∆V2 + ...



Finding E from V

• Work done by E

• Use symmetry to select coordinate axis parallel to E : e.g. point 
charge                 

• Useful for continuous distribution: easier to calculate V (scalar)

•    is slope of V-vs.-s graph: like               (divide by q to obtain V, E)

• Geometry of E and V:      parallel to equipotential surface = 0

= Fs∆s = qEs∆s ⇒...∆V = −Es∆s...

V = 1
4πε0

q
r ⇒ E = Er = −dV

dr = 1
4πε0

q
r2

Vring, on axis = 1
4πε0

Q√
z2+R2 ⇒ E = Ez = −dV

dz = Q
4πε0

z
(z2+R2)3/2

F = −dU
dsĒ

Ē

E⊥ ≈ −∆V
∆s = −V+−V−

∆s



Finding E from V

• In 3 D:

• Kirchhoff’s loop law:      independent of 
path      sum of       `s  around a loop is 
zero (conservation of 
energy,                       )

∆V
∆V

Ex = −∂V
∂x ; Ey = −∂V

∂y ; Ez = −∂V
∂z

∆U = q∆V = 0


