Lecture 13 Chapter 18

- understand macroscopic properties (steady, predictable) such as p, heat transfer in terms of microscopic (random motion of molecules):
connection between T and average translational kinetic energy of molecules
- predict molar specific heats of solids and gases
- 2nd law of thermodynamics: why heat energy "flows" from hot to cold...

Most $\quad 16 \%$ of the molecules likely have speeds between speed $600 \mathrm{~m} / \mathrm{s}$ and $700 \mathrm{~m} / \mathrm{s}$.

Molecular collisions
The molecule changes Before: $\bigcirc \rightarrow$ direction and speed with each collision.

Copyright © 2004 Pearson Education, Inc.., publishing as Addison Wesley

- can't keep track of individual molecules, but averages predictable/steady, e.g. distribution of speeds (molecules with speed in given range different each time, but number same)
- macroscopic properties (e.g.T) related to average behavior

Mean Free Path

- zig-zag path: total distance travelled \gg distance between initial and later position
- average distance between collisions: mean free path

$$
\lambda=\frac{L}{N_{\text {coll }}}
$$

Calculating mean free path

(a)

- molecules undergo hard-sphere collisions
- trajectory of molecule...bends due to collision...
- number of collisions, i.e., molecules in cylinder

$$
\begin{aligned}
& N_{\text {coll }}=\frac{N}{V} V_{\text {cyl }}=\frac{N}{V} \pi(2 r)^{2} L \\
& \Rightarrow \quad \lambda=\frac{1}{4 \sqrt{2} \pi\left(N / V r^{2}\right.} \quad \text { (mean free path) }
\end{aligned}
$$

target molecules not at rest
$r \approx 0.5(1) \times 10^{-10} \mathrm{~m}$ for mono (di)atomic gas

net forces exerted by collisions with
 wall... 3 steps:
I. Impulse due to single molecule 2.Add impulses...
3. Introduce average speed
I. Impulse due to a single collision
elastic collision: $v_{x} \rightarrow-v_{x}$
impulse: $\left(J_{x}\right)_{\text {wall on molecule }}=\Delta p=-2 m v_{x}=-\left(J_{x}\right)_{\text {molecule on wall }}$
$N_{\text {coll }}$ during $\Delta t\left(\right.$ same $\left.v_{x}\right)$
2. Net impluse

$$
\begin{aligned}
& J_{\text {wall }}=N_{\text {coll }} \times\left(J_{x}\right)_{\text {molecule on wall }}=2 N_{\text {coll }} m v_{x} \\
& \text { Average force: } J_{\text {wall }}=F_{\text {avg }} \Delta t \Rightarrow F_{\text {avg }}=2 m v_{x} \frac{N_{\text {coll }}}{\Delta t}
\end{aligned}
$$

Adding the Forces

Only molecules moving to the right in the
shaded region will hit the wall during $\Delta t_{\text {coll }}$.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley
$F_{\text {avg }}=2 m v_{x} \frac{N_{\text {coll }}}{\Delta t}: \frac{N_{\text {coll }}}{\Delta t}$ (rate of collisions)
(assume $\Delta t \ll$ time between collisions)

- molecules travel $\Delta x=v_{x} \Delta t \quad$ during Δt
\quad volume
$N_{\text {coll }}=\frac{N}{V}(A \Delta x) \frac{1}{2} \Rightarrow$ half to right

3. $F_{\text {avg }}=\frac{N}{V} A m\left(v_{x}^{2}\right)$

Root-Mean-Square Speed

average velocity (including sign), $\left(v_{x}\right)_{a v g}=0$
$\left(v^{2}\right)_{a v g}=\left(v_{x}^{2}\right)_{a v g}+\left(v_{y}^{2}\right)_{a v g}+\left(v_{z}^{2}\right)_{a v g}$
root-mean-square speed, $v_{r m s}=\sqrt{\left(v^{2}\right)_{a v g}}$
(close to average speed)
x-axis not special $\Rightarrow\left(v_{x}^{2}\right)$ avg $=\left(v_{y}^{2}\right)$ avg $=\left(v_{z}^{2}\right) a v g$, i.e., $v_{r m s}^{2}=3\left(v_{x}^{2}\right)_{a v g}$
$\Rightarrow F_{\text {avg }}=\frac{1}{3} \frac{N}{V} m v_{r m s}^{2} A$

$$
p=\frac{F}{A}=\frac{1}{3} \frac{N}{V} m v_{\mathrm{ms}}^{2}
$$

- relate macroscopic p to microscopic physics!

Temperature

- average translational kinetic energy of molecule (E is energy of system)

$$
(\epsilon)_{a v g}=\frac{1}{2} m\left(v^{2}\right)_{a v g}=\frac{1}{2} m v_{r m s}^{2}
$$

Using $p=\frac{2}{3} \frac{N}{V}\left(\frac{1}{2} m v_{r m s}^{2}\right)=\frac{2}{3} \frac{N}{V} \epsilon_{a v g}$ and $p V=N k_{B} T$ (ideal gas law),
$\epsilon_{\text {avg }}=\frac{3}{2} k_{\mathrm{B}} T \quad$ (average translational kinetic energy)

- $T=\frac{2}{3 k_{B}} \epsilon_{\text {avg }}: \mathbf{T}$ is measure of average translational kinetic energy: motion stops at absolute zero

Macro
A container of an ideal gas

Micro
N molecules of gas with number density N / V

Pressure, $p=\frac{2}{3} \frac{N}{V} \epsilon_{\text {avg }}$
Temperature, $T=\frac{2}{3 k_{\mathrm{B}}} \epsilon_{\text {avg }}$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

- collisions elastic: loss of energy Using $\epsilon_{\text {avg }}=\frac{1}{2} m v_{r m s}^{2}$ and $\epsilon_{\text {avg }}=\frac{3}{2} k_{B} T$, reduces T , but T constant for isolated system

Example

During a physics experiment, helium gas is cooled to a temperature of 10 K at a pressure of 0.1 atm. What are the (a) mean free path in the gas, (b) the rms speed of the atoms, and (c) the average energy per atom?

Thermal Energy and Specific Heat

- microscopic look at $E_{t h}=K_{\text {micro }}+U_{\text {micro }}$ kinetic of atoms bonds

Monoatomic gases

- only translational kinetic energy:
no bonds between 2 gas particles $\Rightarrow U_{\text {micro }}=0$
$E_{t h}=K_{\text {micro }}=\epsilon_{1}+\epsilon_{2}+\ldots \epsilon_{N}=N \epsilon_{\text {avg }}$
Using $\epsilon_{\text {avg }}=\frac{3}{2} k_{B} T, E_{\mathrm{th}}=\frac{3}{2} N k_{\mathrm{B}} T=\frac{3}{2} n R T \quad$ (thermal energy of a monotomic gas)
Equating $\Delta E_{t h}=\frac{3}{2} n R \Delta T$ (microscopic: relate T to $\epsilon_{\text {avg }}$) to
$\Delta E_{t h}=n C_{V} \Delta T$ (macroscopic: 1st law, i.e., $\Delta E_{t h}=W+Q$ with $W=0$ and definition of C_{V}),
- Macro/micro connection

$$
C_{\mathrm{V}}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
$$

Equipartition Theorem

- 3 independent modes of energy storage
$\epsilon=\frac{1}{2} m v^{2}=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} m v_{Z}^{2}=\epsilon_{x}+\epsilon_{y}+\epsilon_{z}$
- other modes: 2 atoms vibrate (kinetic and potential); diatomic molecule can rotate (dumbbell)
- number of modes of energy storage: degrees of freedom
- statistical physics: thermal energy equally divided among all possible energy modes
- For N particles at temperature T, energy in each degree of freedom $=\frac{1}{2} N k_{B} T=\frac{1}{2} n R T$

Solids

- 3 for vibrating + 3 for bonds compressing...
$E_{\mathrm{th}}=3 N k_{\mathrm{B}} T=3 n R T$
(thermal energy of a solid)
Equating $\Delta E_{t h}=3 n R \Delta T$ to $\Delta E_{t h}=n C \Delta T$, $C=3 R=25.0 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$

Each atom has microscopic translational kinetic energy and microscopic potential energy along all three axes.

- agrees for elemental solids: not as much for gas: model not accurate + quantum effects

Diatomic molecules

Rotation end-over-end about the z-axis

Rotation about its own axis
Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

- 3 for translational +3 rotational +2 vibrational d.o.f $\Rightarrow E_{t h}=4 k_{B} T ; C_{V}=4 R=33.2 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$?

$$
\text { No! } C_{V}=20.8 \mathrm{~J} / \mathrm{mol} / \mathrm{K}=\frac{5}{2} R \Rightarrow 5 \text { d.o.f.? }
$$

- classical Newtonian physics breaks down: quantum effects prevent 2 vibrational and I rotational mode from being active
- Usual T's

$$
\begin{aligned}
& E_{\mathrm{th}}=\frac{5}{2} N k_{\mathrm{B}} T=\frac{5}{2} n R T \\
& C_{\mathrm{V}}=\frac{5}{2} R=20.8 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

(diatomic gases)

