Lecture 13 Chapter 18

 understand macroscopic properties (steady, predictable) such as p, heat transfer in terms of microscopic (random motion of molecules):

connection between T and average translational kinetic energy of molecules

- predict molar specific heats of solids and gases
- 2nd law of thermodynamics: why heat energy "flows" from hot to cold...

- can't keep track of individual molecules, but averages predictable/steady, e.g. distribution of speeds (molecules with speed in given range different each time, but number same)
- macroscopic properties (e.g.T) related to average behavior

Mean Free Path

- zig-zag path: total distance travelled \gg distance between initial and later position
- average distance between collisions: mean free path

$$\lambda = \frac{L}{N_{coll}}$$

Calculating mean free path

- molecules undergo hard-sphere collisions
- trajectory of molecule...bends due to collision...
- number of collisions, i.e., molecules in cylinder

$$N_{coll} = \frac{N}{V} V_{cyl} = \frac{N}{V} \pi (2r)^2 L$$

$$\Rightarrow \lambda = \frac{1}{4\sqrt{2}\pi (N/V)r^2} \quad \text{(mean free path)}$$

$$\texttt{target molecules not at rest}$$

$$r \approx 0.5(1) \times 10^{-10} \text{ m for mono (di)atomic gas}$$

Pressure in a gas

- net forces exerted by collisions with wall...3 steps:
 - I. Impulse due to single molecule
 - 2.Add impulses...
 - 3. Introduce average speed

I. Impulse due to a single collision

elastic collision: $v_x \to -v_x$ impulse: $(J_x)_{wall on molecule} = \Delta p = -2mv_x = -(J_x)_{molecule on wall}$ N_{coll} during Δt (same v_x)

2. Net impluse

 $J_{wall} = N_{coll} \times (J_x)_{molecule \ on \ wall} = 2N_{coll}mv_x$ Average force: $J_{wall} = F_{avg}\Delta t \Rightarrow F_{avg} = 2mv_x \frac{N_{coll}}{\Delta t}$

Adding the Forces

Only molecules moving to the right in the shaded region will hit the wall during Δt_{coll} .

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

 $F_{avg} = 2mv_x \frac{N_{coll}}{\Delta t}: \frac{N_{coll}}{\Delta t} \text{ (rate of collisions)}$ (assume $\Delta t \ll \text{time between collisions)}$

 molecules travel Δx = v_xΔt during Δt volume half to right
 N_{coll} = ^N/_V (AΔx) ¹/₂ ⇒ rate of collisions = ¹/₂ ^N/_Vv_xA

 F_{avg} = ^N/_VAm (v²_x)_{avg} all molecules don't have same speed

Root-Mean-Square Speed

average velocity (including sign), $(v_x)_{avg} = 0$ $(v^2)_{avg} = (v_x^2)_{avg} + (v_y^2)_{avg} + (v_z^2)_{avg}$ **root-mean-square speed**, $v_{rms} = \sqrt{(v^2)_{avg}}$ (close to average speed) x-axis not special $\Rightarrow (v_x^2) avg = (v_y^2) avg = (v_z^2) avg$, i.e., $v_{rms}^2 = 3 (v_x^2)_{avg}$ $\Rightarrow F_{avg} = \frac{1}{3} \frac{N}{V} m v_{rms}^2 A$

$$p = \frac{F}{A} = \frac{1}{3} \frac{N}{V} m v_{\rm rms}^2$$

 relate macroscopic p to microscopic physics!

Temperature

 average translational kinetic energy of molecule (E is energy of system)

$$(\epsilon)_{avg} = \frac{1}{2}m\left(v^2\right)_{avg} = \frac{1}{2}mv_{rms}^2$$

Using
$$p = \frac{2}{3} \frac{N}{V} \left(\frac{1}{2} m v_{rms}^2 \right) = \frac{2}{3} \frac{N}{V} \epsilon_{avg}$$

and $pV = N k_B T$ (ideal gas law),

 $\epsilon_{avg} = \frac{5}{2} k_{B} T$ (average translational kinetic energy)

- $T = \frac{2}{3k_B} \epsilon_{avg}$: T is measure of average translational kinetic energy: motion stops at absolute zero
- collisions elastic: loss of energy reduces T, but T constant for isolated system

Macro
A container of
an ideal gas

Micro
N molecules of gas with
number density N/V

Micro
N molecules of gas with
number density N/V

The average translational
kinetic energy of a
molecule is
$$\epsilon_{avg} = \frac{1}{2}mv_{rms}^2 = \frac{3}{2}k_BT$$
.

Pressure, $p = \frac{2}{3}\frac{N}{V}\epsilon_{avg}$
Temperature, $T = \frac{2}{3}\frac{1}{K}\epsilon_{avg}$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Using
$$\epsilon_{avg} = \frac{1}{2}mv_{rms}^2$$
 and $\epsilon_{avg} = \frac{3}{2}k_BT$,
 $v_{rms} = \sqrt{\frac{3k_BT}{m}}$

Example

 During a physics experiment, helium gas is cooled to a temperature of 10 K at a pressure of 0.1 atm. What are the (a) mean free path in the gas, (b) the rms speed of the atoms, and (c) the average energy per atom?

Thermal Energy and Specific Heat

• microscopic look at $E_{th} = K_{micro} + U_{micro}$ kinetic of atoms bonds

Monoatomic gases

• only translational kinetic energy:

no bonds between 2 gas particles $\Rightarrow U_{micro} = 0$ $E_{th} = K_{micro} = \epsilon_1 + \epsilon_2 + \dots \epsilon_N = N\epsilon_{avg}$ Using $\epsilon_{avg} = \frac{3}{2}k_BT$, $E_{th} = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$ (thermal energy of a monotomic gas)

Equating $\Delta E_{th} = \frac{3}{2}nR\Delta T$ (microscopic: relate T to ϵ_{avg}) to $\Delta E_{th} = nC_V\Delta T$ (macroscopic: 1st law, i.e., $\Delta E_{th} = W + Q$ with W = 0 and definition of C_V), Atom *i* has translational kinetic energy ϵ , but no potential energy

energy ϵ_i but no potential energy or rotational kinetic energy.

Macro/micro connection

 $C_{\rm v} = \frac{3}{2}R = 12.5 \,\text{J/molK} \quad (\text{monatomic gas})$

 agrees with experiment: (i) same for all monoatomic gases (ii) predict value

Equipartition Theorem

• 3 <u>independent modes of energy storage</u>

 $\epsilon = \frac{1}{2}mv^2 = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_Z^2 = \epsilon_x + \epsilon_y + \epsilon_z$

- other modes: 2 atoms vibrate (kinetic and potential); diatomic molecule can rotate (dumbbell)
- number of modes of energy storage: degrees of freedom
- statistical physics: thermal energy <u>equally</u> divided among all possible energy modes
- For N particles at temperature T, energy in each degree of freedom $= \frac{1}{2}Nk_BT = \frac{1}{2}nRT$

Solids

3 for vibrating + 3 for bonds compressing...

 $E_{\rm th} = 3Nk_{\rm B}T = 3nRT$ (thermal energy of a solid)

Equating $\Delta E_{th} = 3nR\Delta T$ to $\Delta E_{th} = nC\Delta T$, C = 3R = 25.0 J/mol/K Each atom has microscopic translational kinetic energy *and* microscopic potential energy along all three axes.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

 agrees for elemental solids: not as much for gas: model not accurate + quantum effects

Diatomic molecules

