Summaries of chapters for 1st mid-term (can<u>not</u> be brought to the exam) <u>14 (Oscillations)</u>

GENERAL PRINCIPLES

Dynamics

SHM occurs when a linear restoring force acts to return a system to an equilibrium position.

Horizontal spring

 $(F_{\text{net}})_x = -kx$

Vertical spring The origin is at the equilibrium position $\Delta L = mg/k$.

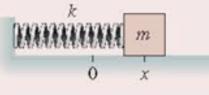
$$(F_{\rm net})_y = -ky$$

$$\omega = \sqrt{\frac{k}{m}} \qquad T = 2\pi\sqrt{\frac{m}{k}}$$

Pendulum

$$(F_{\text{net}})_t = -\left(\frac{mg}{L}\right)s$$

 $\omega = \sqrt{\frac{g}{L}} \qquad T = 2\pi\sqrt{\frac{L}{g}}$





Energy

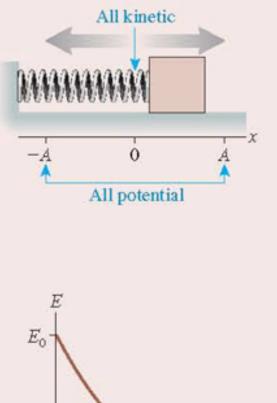
If there is **no friction** or dissipation, kinetic and potential energy are alternately transformed into each other, but the total mechanical energy E = K + U is conserved.

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2$$
$$= \frac{1}{2}m(v_{\text{max}})^2$$
$$= \frac{1}{2}kA^2$$

In a **damped system**, the energy decays exponentially

$$E = E_0 e^{-t/2}$$

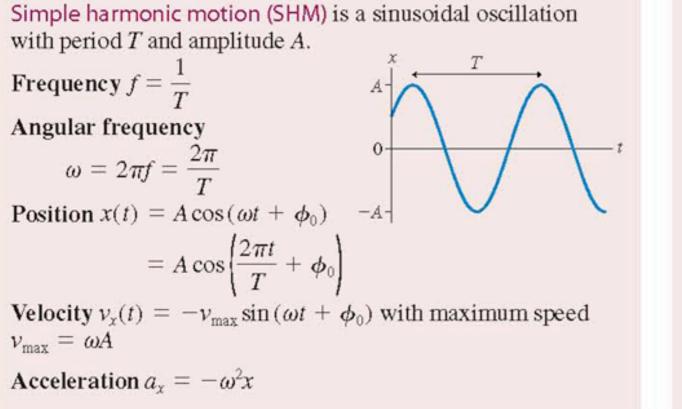
where τ is the time constant.

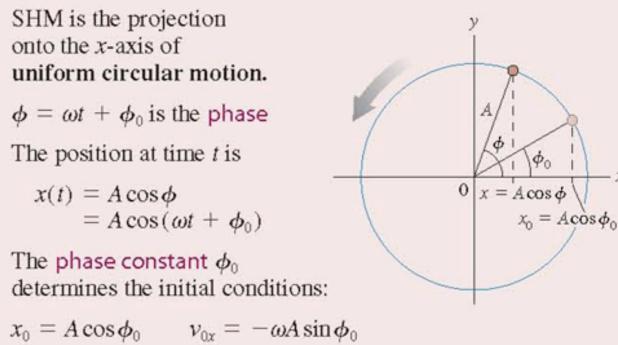


 E_0 $0.37E_0$ 0 0 t

14 (Oscillations) (contd.)

IMPORTANT CONCEPTS





APPLICATIONS

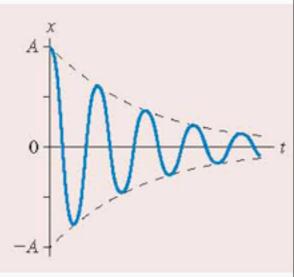
Resonance When a system is driven by a periodic external force, it responds with a large-amplitude oscillation if $f_{ext} \approx f_0$ where f_0 is the system's natural oscillation frequency, or **resonant frequency.** f_0

Damping

If there is a drag force $\vec{D} = -b\vec{v}$, where b is the damping constant, then (for lightly damped systems)

 $x(t) = Ae^{-bt/2m}\cos(\omega t + \phi_0)$

The time constant for energy loss is $\tau = m/b$.



15 (Fluids)

GENERAL PRINCIPLES

Fluid Statics

Gases

- · Freely moving particles
- Compressible
- · Pressure primarily thermal
- Pressure constant in a laboratory-size container

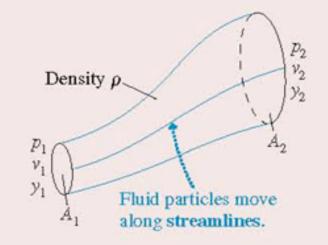
Liquids

- · Loosely bound particles
- Incompressible
- Pressure primarily gravitational
- Hydrostatic pressure at depth d is $p = p_0 + \rho g d$

Fluid Dynamics

Ideal-fluid model

- Incompressible
- · Smooth, laminar flow
- Nonviscous
- Irrotational



IMPORTANT CONCEPTS

Density $\rho = m/V$, where *m* is mass and *V* is volume.

Pressure p = F/A, where F is the magnitude of the fluid force and A is the area on which the force acts.

- · Exists at all points in a fluid
- · Pushes equally in all directions
- · Constant along a horizontal line
- Gauge pressure $p_g = p 1$ atm

Equation of continuity $v_1A_1 = v_2A_2$

Bernoulli's equation

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

Bernoulli's equation is a statement of energy conservation.

15 (Fluids) (contd.)

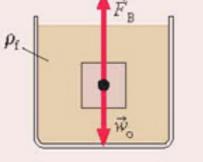
APPLICATIONS

Buoyancy is the upward force of a fluid on an object.

Archimedes' principle

The magnitude of the buoyant force equals the weight of the fluid displaced by the object.

 $\begin{array}{ll} {\rm Sink} & \rho_{\rm avg} > \rho_{\rm f} & F_{\rm B} < w_{\rm o} \\ {\rm Rise \ to \ surface} & \rho_{\rm avg} < \rho_{\rm f} & F_{\rm B} > w_{\rm o} \\ {\rm Neutrally \ buoyant} & \rho_{\rm avg} = \rho_{\rm f} & F_{\rm B} = w_{\rm o} \end{array}$



20 (Traveling Waves)

GENERAL PRINCIPLES

The Wave Model

This model is based on the idea of a traveling wave, which is an organized disturbance traveling at a well-defined wave speed v.

- In transverse waves the particles of the medium move perpendicular to the direction in which the wave travels.

MANAMAN

• In longitudinal waves the particles of the medium move parallel to the direction in which the wave travels.

A wave transfers **energy**, but no material or substance is transferred outward from the source.

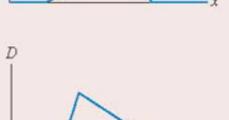
D

IMPORTANT CONCEPTS

The displacement D of a wave is a function of both position (where) and time (when).

• A snapshot graph shows the wave's displacement as a function of position at a single instant of time.

• A history graph shows the wave's displacement as a function of time at a single point in space.



A wave traveling in the positive x-direction with speed v must be a function of the form D(x - vt).

A wave traveling in the negative x-direction with speed v must be a function of the form D(x + vt).

Three basic types of waves:

- Mechanical waves travel through a material medium such as water or air.
- Electromagnetic waves require no material medium and can travel through a vacuum.
- Matter waves describe the wavelike characteristics of atomic-level particles.

For mechanical waves, the speed of the wave is a property of the medium. Speed does not depend on the size or shape of the wave.

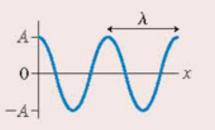
Sinusoidal waves are periodic in both time (period *T*) and space (wavelength λ).

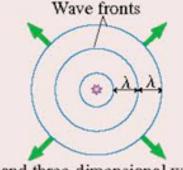
$$D(x, t) = A \sin[2\pi(x/\lambda - t/T) + \phi_0]$$

= $A \sin(kx - \omega t + \phi_0)$

where A is the amplitude, $k = 2\pi/\lambda$ is the wave number, $\omega = 2\pi f = 2\pi/T$ is the angular frequency, and ϕ_0 is the phase constant that describes initial conditions.

The fundamental relationship for any sinusoidal wave is $v = \lambda f$.





One-dimensional waves

Two- and three-dimensional waves

20 (Traveling Waves) (contd.)

APPLICATIONS

Wave speeds for some specific waves:

- String (transverse): $v = \sqrt{T_s/\mu}$
- Sound (longitudinal): v = 343 m/s in 20°C air
- Light (transverse): v = c/n, where c = 3.00 × 10⁸ m/s is the speed of light in a vacuum and n is the material's index of refraction.

The wave intensity is the power-to-area ratio

$$I = P/A$$

For a circular or spherical wave
 $I = P_{source}/4\pi r^2$

Copyright ©2004 Pearson Education, Inc., publishing as Addison Wesley

The Doppler effect occurs when a wave source and detector are moving with respect to each other: the frequency detected differs from the frequency f_0 emitted.

Approaching source

$$f_{+} = \frac{f_{0}}{1 - v_{s}/v}$$

Observer approaching a source

$$f_{+} = (1 + v_{\circ}/v)f_{0}$$

Receding source

$$f_- = \frac{f_0}{1 + v_s/v}$$

Observer receding from a source

$$f_{-} = (1 - v_{\circ}/v)f_{0}$$

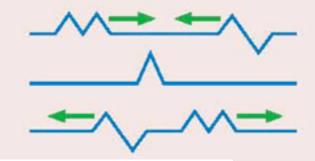
The Doppler effect for light uses a result derived from the theory of relativity.

21 (Superposition)

GENERAL PRINCIPLES

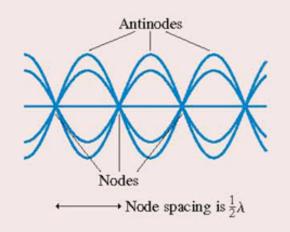
Principle of Superposition

The displacement of a medium when more than one wave is present is the sum of the displacements due to each individual wave.



IMPORTANT CONCEPTS

Standing waves are due to the superposition of two traveling waves moving in opposite directions.



The amplitude at position x is

 $A(x) = 2a\sin kx$

where a is the amplitude of each wave.

The boundary conditions determine which standing wave frequencies and wavelengths are allowed.

Interference

In general, the superposition of two or more waves into a single wave is called interference.

Maximum constructive interference occurs where crests are aligned with crests and troughs with troughs. These waves are in phase. The maximum displacement is A = 2a.

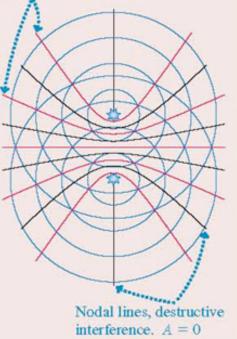
Perfect destructive interference occurs where crests are aligned with troughs. These waves are out of phase. The amplitude is A = 0.

Interference depends on the phase difference $\Delta \phi$ between the two waves.

Constructive:
$$\Delta \phi = 2\pi \frac{\Delta r}{\lambda} + \Delta \phi_0 = 2m\pi$$

Destructive:
$$\Delta \phi = 2\pi \frac{\Delta r}{\lambda} + \Delta \phi_0 = 2(m + \frac{1}{2})\pi$$

Antinodal lines, constructive interference. A = 2a



 Δr is the path-length difference of the two waves and $\Delta \phi_0$ is any phase difference between the sources. For identical sources (in phase, $\Delta \phi_0 = 0$):

Interference is constructive if the path-length difference $\Delta r = m\lambda$.

Interference is destructive if the path-length difference $\Delta r = (m + \frac{1}{2})\lambda$.

The amplitude at a point where the phase difference is $\Delta \phi$ is $A = \left| 2a \cos \left(\frac{\Delta \phi}{2} \right) \right|$

21 (Superposition) (contd.)

APPLICATIONS

Boundary conditions

Strings, electromagnetic waves, and sound waves in closedclosed tubes must have nodes at both ends.

$$\lambda_m = \frac{2L}{m} \qquad f_m = m \frac{v}{2L} = m f_1$$

where $m = 1, 2, 3, \ldots$

The frequencies and wavelengths are the same for a sound wave in an open-open tube, which has antinodes at both ends.

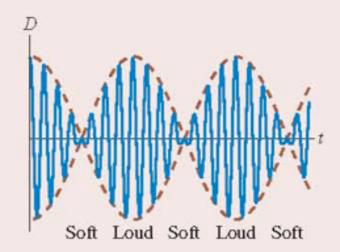
A sound wave in an open-closed tube must have a node at the closed end but an antinode at the open end. This leads to

$$\lambda_m = \frac{4L}{m} \qquad f_m = m \frac{\nu}{4L} = m f_1$$

where $m = 1, 3, 5, 7, \ldots$

Copyright ©2004 Pearson Education, Inc., publishing as Addison Wesley

Beats (loud-soft-loud-soft modulations of intensity) occur when two waves of slightly different frequency are superimposed.



The beat frequency between waves of frequencies f_1 and f_2 is

$$f_{\rm beat}=f_1\,-f_2$$