Lecture 4

Fluid statics and dynamics

- Using pressure: Hydraulic Lift
- Archimedes principle (float or sink?)
- Continuity equation
- Bernoulli's equation
- Applications

Hydraulic Lift

(b)

- Use pressurized liquids for work (based on Pascal's principle): increase
is incompressible,
$A_{1} d_{1}=A_{2} d_{2}$. pressure at one point by pushing piston...at another point, piston can push upward
- Force multiplication:

$$
\begin{aligned}
& \quad p_{1}=\frac{F_{1}}{A_{1}}+p_{0} \\
& \text { equal to } p_{2}=\frac{F_{2}}{A_{2}}+p_{0}+\rho g h \frac{A_{2}}{A_{1}}>1 \\
& \Rightarrow F_{2}=F_{1} \frac{A_{2}}{A_{1}}-\rho g h A_{2}
\end{aligned}
$$

- Relating distances moved by pistons:

$$
V_{1}=A_{1} d_{1} \text { equal to } V_{2}=A_{2} d_{2}
$$

$$
\Rightarrow d_{2}=\frac{d_{1}}{A_{2} / A_{1}}
$$

- Additional force to move heavy object thru' $d_{2}: \Delta F=\rho g\left(A_{1}+A_{2}\right) d_{2}$
atmospheric pressure
p_{0} plus pressure F_{1} / A_{1}, due to \vec{F}_{1}.
 F_{2} / A_{2} plus $\rho g h$ from the liquid column of height h.

Buoyancy:Archimedes’ principle

- Buoyant force: upward force of a fluid

Buoyant force, $F_{B}=\rho_{f} V_{f} g$ weight of displaced fluid,

(a)

Imaginary boundary around a parcel of fluid

(b)

Real object with same size and shape as the parcel of fluid

The buoyant force on the object is the same as on the parcel of fluid because the surrounding fluid has not changed.

The net force of the fluid on the cylinder is the buoyant force \vec{F}_{B}.

right © 2004 Pearson Education, Inc., publishing as Addison Wesle

To float or sink?

- Net force: $F_{B}-w$

$$
\rho_{f} V_{f} g \quad \rho_{\text {avg }} . V_{0} g
$$

Float or sink or static equilibrium for
$\rho_{a v g .}<\rho_{f}$ or $\rho_{\text {avg. }}>\rho_{f}$ or $\rho_{a v g .}=\rho_{f}$
master formula
...rather for Ist case pushed up till only partly submerged:

An object of density ρ_{o} and volume V_{o} is floating on a fluid of density ρ_{f}.

The submerged volume of the object is equal to the volume V_{f} of displaced fluid.

$$
\begin{aligned}
& F_{B}=\rho_{f} V_{f} g=w=\rho_{0} V_{0} g \\
\Rightarrow & V_{f}<V_{0}
\end{aligned}
$$

- 90% of ice underwater...

Example

- A 6.0 cm .-tall cylinder floats in water with its axis perpendicular to the surface. The length of the cylinder above water is 2.0 cm . What is the cylinder's mass density?

Boats

Massless, rigid walls

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

- steel plate sinks, but geometry (sides) allows it to dissipate more fluid than actual steel volume:

$$
\rho_{\text {avg. }}=\frac{m_{0}}{A h}<\rho_{f}
$$

Ideal fluid

- incompressible (not so good approximation for gases)
- laminar (steady) flow (not turbulent): velocity at given point is constant with time
- non-viscous (no resistance to flow a la no friction for solid object)
- irrotational (test paddle wheel won't rotate)

Equation of continuity (I)

- Streamlines (path of "particle of fluid":e.g. colored drop of water in stream)
- Flow tube: bundle of streamlines ("invisible pipe")

Equation of continuity (II)

- Fluid not created/ destroyed/stored within flow tube

$$
\begin{aligned}
& \quad V_{1}=A_{1} \Delta x_{1}=A_{1} v_{1} \Delta t \\
& \text { (volume flowing across } A_{1} \text {) }=V_{2} \ldots
\end{aligned}
$$

Flow faster in narrower part : e.g., water from tap
$\mathrm{Q}=\mathrm{V} A$ (volume flow rate) constant

Bernoulli's equation

- work and energy conservation applied to volume of fluid in flow tube: $\Delta K+\Delta U=W_{\text {ext }}$.

$p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$
by pressure of surrounding fluid

$$
\text { Volume } A_{2} \Delta x_{2}
$$

$$
\begin{array}{ccl}
W_{1}=F_{1} \Delta x_{1} & =p_{1} V \\
W_{2} & =-F_{2} \Delta x_{2} & =-p_{2} V \\
\Delta U & =m g y_{2}-m g y_{1} & =\rho V g\left(y_{2}-y_{1}\right) \\
\Delta K=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2} & =\frac{1}{2} \rho V\left(v_{2}^{2}-v_{1}^{2}\right)
\end{array}
$$

Only forces external to the
system do work on the system.
tube does not cause any work
master formulae

$$
p+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }
$$

Example

- Water flows at $5.0 \mathrm{~L} / \mathrm{s}$ through a horizontal pipe that narrows smoothly from a 10 cm diameter to 5.0 cm . diameter. A pressure gauge in the narrow section reads 50 kPa .What is the reading of a pressure gauge in the wide section?

Applications I:Venturi tube (Measuring speed of flowing) gas

- Combine master formulae: (i) continuity equation (ii) Bernoulli's equation (equal y's) and (iii) pressure vs. depth

$$
\begin{aligned}
& v_{1}=A_{2} \sqrt{\frac{2 \rho_{\text {liq. } g h}^{\rho\left(A_{1}^{2}-A_{2}^{2}\right)}}{}} \\
& v_{2}=A_{1} \sqrt{\frac{2 \rho_{\text {liq. }} g h}{\rho\left(A_{1}^{2}-A_{2}^{2}\right)}}
\end{aligned}
$$

Airplane lift

- Continuity and Bernoulli's equations

1. Flow tube decreases in size due
to compression of streamlines.
The higher speed lowers the
pressure to $p<p_{\text {atmos }}$.

