Lecture 5 (Feb. 6)

- Pressure in liquids and gases
- Measuring and using pressure
- Archimedes' principle (float or sink?)
- Measuring device: fluid pushes against "spring", deduce force from displacement
- Pressure exists at all points, not just walls (like tension in string)
- Pressure is same in all directions at a point
- Pressure increases with depth in liquid (not in gas)

Causes of Pressure

- Difference in pressure between liquids and gases due to (in)compressibility
- compare 2 jars containing mercury liquid and gas: without gravity (outer space) and with gravity
- 2 contributions to pressure:
(i) Gravitational: fluid pulled down, exerts forces on bottom and side
(ii) Thermal: collisions of gas molecules with walls

Pressure in Gases

- For lab.-size container, gravitational contribution negligible \longmapsto pressure is same at all points
- increases with density (more collisions with wall)

Atmospheric pressure

- Density decreases as we go away from earth's surface \square atmospheric pressure decreases
- At sea-level: IOI, $300 \mathrm{~Pa}=\mathrm{I}$ atm. (not SI unit)
- Fluid exerts pressure in all directions \quad B net force $=0$ ("sucking" force due to no air on one side)

Pressure in liquids (I)

- Gas fills entire container (compressible) vs. liquid fills bottom, exerting force: gravitational contribution dominant
- Pressure at depth d (assuming density constant: not for gas):
pressure at surface

$$
\begin{aligned}
m g+p_{0} A & =p A \\
m & =\rho A
\end{aligned}
$$

Pressure in liquids (II)

- Connected liquid rises to same height in all open regions of container
- Pressure same at all points on horizontal line
- Pascal's principle: change in pressure same at all points:

$$
\begin{aligned}
& \quad p=p_{0}+\rho g d \rightarrow p^{\prime}=p_{1}+\rho g d \\
& (\text { change in pressure at surface }) \\
& \Rightarrow \Delta p=p_{1}-p_{0} \text { for all } d
\end{aligned}
$$

Strategy for hydrostatic problems

- draw picture with details...
- pressure at surface: atmospheric or gas or F/A (piston)
- pressure same along horizontal line
- $p=p_{0}+\rho g d$

Measuring Pressure

Gauge pressure, $p_{g}=\mathrm{P}-\mathrm{I}$ atm.

- Manometer (for gas pressure):

$$
\begin{aligned}
& p_{1}=p_{\text {gas }} \\
& \text { equal to } \\
& p_{2}=p_{\text {atm. }}+\rho g h \\
& \quad \Rightarrow p_{\text {gas }}=p_{\text {atm. }}+\rho g h
\end{aligned}
$$

- Barometer (for atmospheric pressure)

$$
\begin{aligned}
& p_{1}=p_{a t m} \\
& \text { equal to } \\
& p_{2}=0+\rho g h \\
& \quad \Rightarrow p_{a t m}=\rho g h
\end{aligned}
$$

I atm. $=101.3 \mathrm{kPa} \rightarrow \mathrm{h}=760 \mathrm{~mm}$ of mercury

Hydraulic Lift

- Use pressurized liquids for work (based on Pascal's principle): increase pressure at one point by pushing piston...at another point, piston can push upward
- Force multiplication:

$$
\begin{aligned}
& p_{1}=\frac{F_{1}}{A_{1}}+p_{0} \\
& \text { equal to } p_{2}=\frac{F_{2}}{A_{2}}+p_{0}+\rho g h \\
& \Rightarrow F_{2}=F_{1} \frac{A_{2}}{A_{1}}-\rho g h A_{2}
\end{aligned}
$$

- Relating distances moved by pistons:

$$
\begin{aligned}
& V_{1}=A_{1} d_{1} \text { equal to } V_{2}=A_{2} d_{2} \\
\Rightarrow & d_{2}=\frac{d_{1}}{A_{2} / A_{1}}
\end{aligned}
$$

- Additional force to move heavy object thru' d_{2}

$$
\Delta F=\rho g\left(A_{1}+A_{2}\right) d_{2}
$$

Buoyancy:Archimedes' principle

- Buoyant force: upward force of a fluid
- Buoyant force, $F_{B}=$ weight of displaced fluid, $\rho_{f} V_{f} g$

To float or sink?

- Net force: $\quad F_{B}-w$

$$
\rho_{f} V_{f} g \quad \nearrow_{\text {avg. }} V_{0} g
$$

- Float or sink or static equilibrium for

$$
\rho_{\text {avg. }}<\rho_{f} \text { or } \rho_{a v g .}>\rho_{f} \text { or } \rho_{\text {avg. }}=\rho_{f}
$$

- ...rather for Ist case pushed up till only partly submerged:

$$
\begin{aligned}
& F_{B}=\rho_{f} V_{f} g=w=\rho_{0} V_{0} g \\
\Rightarrow & V_{f}<V_{0}
\end{aligned}
$$

- Boats: steel plate sinks, but geometry (sides) allows it to displace more fluid than actual steel volume:

$$
\rho_{\text {avg. }}=\frac{m_{0}}{A h}<\rho_{f}
$$

