Lecture 38

Real batteries

Resistors in Parallel

Example of Resistor Circuits

Grounding

Internal

resistance

terminal (user) voltage

$$\Delta V_{\text{bat}} = \mathcal{E} \quad \Delta V_{bat} = E - Ir$$

for resistor connected:

$$I = \frac{E}{R_{eq}} = \frac{E}{R+r}$$

$$\Delta V_R = IR = \frac{R}{R+r}E$$

$$\Delta V_{bat} = E - Ir;$$

$$\Delta V_{bat} = E - Ir;$$

$$\Delta V_{bat} = \mathcal{E} - Ir \Delta V_{R} = \Delta V_{bat} = E$$

produce

• replace high by zero resistance $\rightarrow \frac{I_{short} = \frac{E}{r}}{(\infty \text{ for ideal, } r = 0)}$

Real Batteries

Although physically separated, the internal resistance r is electrically in series with R.

This means the two circuits are equivalent.

Parallel Resistors

potential differences same:

$$\Delta V_1 = \Delta V_2 = V_{cd}$$

- Kirchhoff's junction law: $I = I_1 + I_2$
- Ohm's law:

$$I = \frac{\Delta V_1}{R_1} + \frac{\Delta V_2}{R_2} = \Delta V_{cd} \frac{1}{R_1} + \frac{1}{R_2}$$

Replace by equivalent resistance:

$$R_{cd} = \frac{\Delta V_{cd}}{I} = \frac{1}{R_1} + \frac{1}{R_2}^{-1}$$

$$R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}\right)^{-1}$$

(a) Two resistors in parallel

(b) An equivalent resistor

Copyright @ 2004 Pearson Education, Inc., publishing as Addison Wesley

(parallel resistors)

- Identical resistors($R_1 = R_2$): $R_{series\ eq} = 2R$; $R_{parallel\ eq} = \frac{R}{2}$
- In general, $R_{eq} < R_1$ or R_2 ...in parallel

- measure potential difference across circuit element (place in parallel; don't need to break connections, unlike for ammeter)
- total resistance: $R_{eq} = \frac{1}{R} + \frac{1}{R_{voltmeter}}$
- in order not to change voltage:

$$R_{voltmeter}$$
 R (ideally, ∞)

Strategy for Resistor Circuits

- assume ideal wires, batteries
- use Kirchhoff's laws and rules for series and parallel resistors

Voltmeters

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wes

- reduce to equivalent resistor (basic circuit)
- rebuild using current same for series and potential difference same for parallel

Example of Resistor Circuit

 600Ω

(a) Break down the circuit

Find / and Δ // for each resistor

Parallel

Parallel

Equivalent

Series

- so far, potential difference, △ 1/ (physically meaningful), enters Ohm's law (no need to establish zero point)
- need common reference point for connecting 2 circuits
- grounding: connect I point in circuit to earth (_{Vearth} = 0) by ideal wire: no return wire (no current); wire is equipotential point in circuit has earth's potential specific value of potential at each point
- does not change how circuit functions...
 unless malfunction/breaking of circuit
 (enclose circuit in grounded case insulated
 from circuit): case comes in contact with
 circuit (→ touching would have caused
 electrocution) → current thru' wire (fuse
 blows...)

Grounding

