Lecture 13

- Temperature scales, absolute zero
- Phase changes, equilibrium, diagram
- Ideal gas model

Temperature

- temperature is related to system's thermal energy (kinetic and potential energy of atoms)
- measured by thermometer: small system undergoes a change upon exchagning thermal energy, e.g., length of mercury/alcohol in glass tube or ideal gas' pressure

Temperature Scales

- Celcius/centigrade scale: boiling point $(100^{\circ}C)$ freezing point $(0^{\circ}C)$
- Fahrenheit scale: $T_F = \frac{9}{5}T_C + 32^\circ$ (212°F and 32°F)

Absolute Zero and Absolute Temperature

- Property changes <u>linearly</u> with temperature: e.g., pressure of constant-volume gas
- p = 0 for all gases at $T_0 = -273 \circ_C$ p due to collisions — all motion stopped, <u>zero</u> thermal energy: <u>absolute zero</u> (lowest temperature)
- <u>absolute temperature scale</u>: zero point at absolute zero <u>Kelvin</u> scale if same unit size as Celcius scale:

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

$$T_K = T_C + 273$$
 (no degrees for Kelvin)

Phase Changes

- melting/freezing point: temperature at which solid becomes liquid...thermal energy large enough to allow molecules to move around
- phase <u>equilibrium</u>: 2 phases co-exist
- <u>condensation/boiling</u> point: phase equilibrium between liquid and gas

 thermal energy too large for bondin Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley
- phase change <u>temperatures</u> are <u>pressure-dependent</u>: freezing (boiling) point higher (lower) at lower pressure

Phase diagram

- how phases and phase changes vary with T, p
- 3 regions with phase transitions at boundaries...gas-solid (<u>sublimation</u>)
- <u>critical</u> point: liquid-gas boundary ends
- triple point: all 3 phases co-exist
- triple point of water $(T_3 = 0.01^{\circ}C)$ used as reference point (reproduced with no variation) for Kelvin scale:
 - 273.16 K
 - 0 K fixed by gas properties
- cf. Celcius scale requires 2 reference points: boiling and melting points (p-dependent)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Ideal Gases

- (strong) repulsive forces between atoms (incompressibility of solids/liquids + (weak) attractive forces (tensile strength of solids; cohesion of liquid droplets)
- ullet solids and liquids: atomic separation ${}^\sim r_{eq}$

• gases: average $r \gg r_{eq} \longrightarrow$ freely moving till collide (steep wall for $r < r_{eq}$.

important)

- Ideal gas model: hard non-interacting spheres, bounce on contact
- good for low density and $T\gg$ condensation point (both mono and d-atomic gases)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

