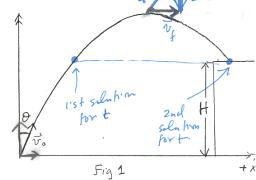

Hey


PHYSICS 161, Spring 2003 Discussion Quiz, Tuesday, Feb 25

a). In term of unit vectors \hat{i} and \hat{j} , write down the initial velocity vector \vec{v}_i .

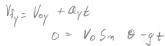
b). Write down the velocity vector \vec{v}_{top} at the instant the ball reaches the peak of its trajectory. Indicate this velocity vector on the plot above.

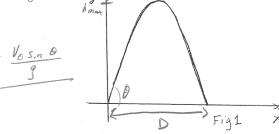
c). Figure out $\Delta \vec{v}$ between t=0 and $t=t_{max}$ graphically i.e., by using the head-to-tail rule of vector addition. Here, $t=t_{max}$ is the instant the ball reaches its maximum height. How is the direction of the average acceleration vector related to

 $\Delta \vec{v}$? What about its magnitude? $\Delta \vec{v} = \vec{V} \cdot \vec{v}$

d). Using $y(t) = y_0 + v_{0y}t + 1/2 a_y t^2$, set up a quadratic equation to find the time it takes the ball to reach the tree at height H.

e). Look at Fig 1 again carefully. How many valid solutions do you expect to find for t from this quadratic equation? What do each of these solutions correspond to?


2 Solutions, the first corresponds to Y=H with dy LO the second Y=H, dy >0 V see Fig 1.


PHYSICS 161, Spring 2003 Discussion Quiz 3, Thursday, Feb 27

Q1). A ball is thrown with an initial velocity v_0 at an angle of θ above the horizontal. A y vs x plot of its motion is given below. 9 🖈

a). Find the time t_{up} for the ball to reach its maximum height h_{max}

in terms of v_0 , θ and g. $V = V_0 C_0 \leq \theta + V_0 \leq m\theta$

b). Find the time t_{down} for the ball to travel from $y = h_m x$ back down to y = 0.

c). Find the total distance x_{total} travelled by the ball in the x-direction in terms of

 v_0 , θ and g. D=Voxt

$$0 = (V_0 Cos O) \left(\frac{V_0 Sin \theta}{g} \right)$$

$$D = V_0^2 Sin \theta Cos O$$

d & e &f). For a fixed v_0 , suppose we increase θ . Let's call the smaller angle θ_1 and the larger angle θ_2 .

d). Compare the total time of flight $t_{flight}^{(1)}$ with $t_{flight}^{(2)}$. $\theta_{2} ? \theta_{1} > \frac{T}{y} \Rightarrow \varphi ? V_{0} y \Rightarrow \mathcal{L}_{flight}^{(2)} > \mathcal{L}_{flight}^{(2)}$ $V_{0y} = V_{0} S_{m} \theta$ e). What would happen to h_{max} ? Why? $h_{max} > h_{max}^{(1)} > h_{max}^{(2)} > h_{oy}^{(2)} > V_{oy}^{(2)}$ $h = V_{0} y t - \frac{1}{2} g t^{2}$

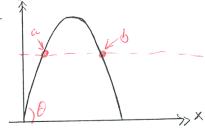
f). What would happen to the range x_{total} ? Is it possible for h_{max} to change but

The what would happen to the range
$$x_{total}$$
: is it possible for x_{max} to change out x_{total} to remain the same? If so, find the condition that must be satisfied between θ_1 and θ_2 if $x_{total}^{(1)} = x_{total}^{(2)}$.

If $\theta_1 \land \theta_2 \land \theta_3 \land \theta_4 \land \theta_2 \land \theta_4 \land \theta_4$

PHYSICS 161, Spring 2003 Discussion Quiz, Friday, Feb 28

 $V_i = V_0 (s_0 \theta_1)$ Q1). A ball is thrown with an initial velocity \vec{v}_i with magnitude v_0 at an angle θ above the horizontal. A y vs x plot of its motion is given below.


A). Find the time t_{im} for the ball u

to reach its maximum height h_{max} in terms of v_0 , θ and g.

$$V_{G} = V_{oy} + at$$

$$0 = V_{osm}b - gt$$

$$t = V_{osm}b$$

b). Find the time t_{down} for the ball to travel from $y = h_{max}$ back down to y = 0.

What seems to be the relationship between
$$t_{up}$$
 and t_{down} ?

$$\begin{cases}
y_{f} = \sqrt{0 + V_{oft} + \sqrt{g} + 2} & y_{f} = \sqrt{0 + V_{oft} + \sqrt{g} + 2} & 0 = \sqrt{0 + \sqrt{g} + 2} \\
h = 0 + \sqrt{0 + \sqrt{g} + 2} & 0 = \sqrt{0 + \sqrt{g} + 2} & 0 = \sqrt{0 + \sqrt{g} + 2} \\
0 = h + 0(4) - \frac{1}{2}gt^{2} & Vosin 6 - gt = 0 \\
6 = \sqrt{0 + \sqrt{g} + 2} + \sqrt{2}gt^{2} & t = \sqrt{2}gt^{2}
\end{cases}$$

c). Find the total distance
$$x_{total}$$
 traveled by the ball in the x -direction in terms of v_0 , θ and g . $t_0p = \frac{V_0 S_{un} O}{g} \Rightarrow t_{tot} = \frac{2V_0 S_{un} O}{g}$

$$\Rightarrow X_{total} = V_X t = \frac{2V_0 S_{un} O}{g} \Rightarrow \frac{2V_0 S_{un} O}{g} \Rightarrow$$

d). Find the final vertical velocity v_{fy} and the final horizontal velocity v_{fx} of the ball right before it hits the ground. What angle does the final velocity vector make with the horizontal?

with the horizontal?

Vfy =
$$-V_{-y}$$
 = $-V_{0}$ Sm θ

Vfy makes an angle of θ below the horizontal

e). How does the magnitude of initial velocity \vec{v}_i compare with the magnitude of the

final velocity
$$\vec{v}_f$$
?

 $V = V_0 \cos \theta_1 + V_0 \sin \theta_1$
 $\vec{v}_i = \vec{v}_i + \vec{v}_i +$

same vertical position y. What implications dos your result for part (e) have for the ball's vertical velocity at any such pair of points.

$$|V_a| = |V_b|$$
, $V_{ya} = -V_{yb}$, $V_{xa} = V_{xb}$