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| Introduction to Energy

s
= Energy is one of the most important concepts in

science although it is not easily defined

= Every physical process that occurs in the Universe
involves energy and energy transfers

= The energy approach to describing motion is
particularly useful when the force is not constant

= An approach will involve Conservation of Energy

= This could be extended to biological organisms,
technological systems and engineering situations
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. Energy of Falling Object

=
. . Energy of ¥ E of
= Kinematic eq.v; =v +2a,(y, —»,) positon |  motion
= Gravity is the only force acting “ v QA
= Multiplying,m & putting a, =g, . o
1,1 5] g
Emvfzgmvi _mg(yf_yi) U ¥y - K,
1 1 The sum K+ U, ¥
— Emv; -+ mgyf = Emviz + mgyi doesn turli:m;._:e.',ﬂ _

» Define K = ;mv*: kinetic energy
U, =mgy . gravitational potential energy

» Then, K, +U, =K, tU,: Conservation of Energy
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- Kinetic Energy

=
= Kinetic energy is the energy associated with the
motion of an object

= Kinetic energy is always given by K= Ya2mv?,
where vis the speed of the object
» Kinetic energy is a scalar, /ndependent of direction of v
= Kinetic energy cannot be negative

= Units of energy: 1 kg m?4/s2= 1 Joule
= Energy has dimensions of [M L2 T-2]
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. Potential Energy

=

= Potential energy is the energy associated with the
relative position of objects that exert forces on
each other

= A potential energy can only be associated with specific
types of forces, i.e. conservative forces

= There are many forms of potential energy:
gravitational, electromagnetic, chemical, nuclear

= Gravitational potential energy is associated with
the distance above Earth’s surface: U, = mgy
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Total Mechanical Energy

=3

= The sum of kinetic and potential energies is the
mechanical energy of the system: £= K+ JU.

= When conservative forces act in an /so/ated system,
Kinetic energy gained (or lost) by the system as its
members change their relative positions is balanced
by an equal loss (or gain) in potential energy

» This is the Conservation of Mechanical Energy

» If there is friction or air drag, the total mechanical energy
IS not conserved, i.e. constant
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| Gravitational Potential Energy

3
= The system consists of Earth and a book 4 vg
= Initially, the book is at rest (K= 0) at y = Ar
W (Uy = mgy,) V| o
= When the book falls and reaches y,, A 1g
K, + mgy, = 0 + mgy,
= K=mg(Wh - )y.) >0 l

= The kinetic energy that was converted from potential
energy depends only on the re/ative displacement ), - y,

= It doesn’t matter where we take y=0
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3

Bob uses a slingshot to shoot a 20.0 g
pebble straight up with a speed of 25.0 m/s.

How high does a pebble go?
1

Before: K, =§mv2 =6.25J,U,=0

After: K=0, U, =mgy =0.196 y,
Using energy conservation, K +U =K, +U,,
0+0196y =6.25+0, or y, =319 m

Kinetic energy was converted into gravitational

potential energy by 6.25 J.

31-Mar-08
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. Example 1: Launching a Pebble

y

O After:
,YJ

¥, = 0 m/s

Before:

Y =0m

0= vV, = 25 m/s
m = 0.020 kg

Fand: iy,
p. 8



Energy Conservation in 2-D

We will now analyze 2 - D motion axis

along a frictionless incline.

dv
F =ma =m—=,
Z A S dt‘
. dv_ds dv
—mgsml =m——=my, —=
ds dt ds

Multiplying both sides by ds, —mg sin Ods = mv dv.
But sin @ds = dy. Integrating from initial to final positions,

L L
Emvf+mgyf :Emvl. +mgy,

This 1s the same equation as in a 1 - D motion.
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. Example 2: Downhill Sledding
G
Christine runs forward with her 4
sled at 2.0 m/s. She hops onto Before: y, = 5.0 m
the sled at the top of a 5.0 m
high, very slippery slope.
What is her speed at the bottom?
Using the conservation of energy,

%mvé +mgy, =%mvf +mgy,

v, =V +2g(y, —»,) =10 m/s

Notice that (1) the mass cancelled out and (2) only Ay is needed.
We could have taken the bottom of the hill as y = 10.0 m and the top as
y = 15.0 m, and gotten the same answer.
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. Energy Conservation: Pendulum

-3

= As the pendulum swings, there is a
continuous exchange between
potential and kinetic energies

= At A, all the energy is potential

= At B, all of the potential energy at A .
is transformed into kinetic energy

« Let zero potential energy be at B

mg

= At C, the kinetic energy has been transformed back into
potential energy
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Example 3: Ballistic Pendulum

A 10 g bullet is fired into a 1200 g wood block hanging from a
150 cm long string. The bullet embeds itself into the block,
and the block then swings out to an angle of 40°.

What was the speed of the bullet?

L=150m Lcos@

my = 0.010 kg
(Voy)p Dl D i —— y, = 0 m
my = 1.20 kg "1
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Example 3, cont

This problem has two parts: (a) the bullet and the block make a perfectly
inelastic collision, in which momentum is conserved, and (b) the total mass
as a system undergoes a pendulum motion, in which energy is conserved.

(a) Momentum conservation : (mw +m, )v1 =my ,+tmy,,

m_ +m,
w

Sincev , =0, v,, = v,
mb

1

(b) Energy conservation : 5 m v, +m, gy, = 5 m v +m gy

Since v, = 0 and we can choose y, =0, v, =,/2gy, = \/ZgL(l —COs 9)

Therefore, v,, = M, T, \/ 2gL(1-cos6)

b

_1.210ke /(9,80 m/s* X1.50 m)(1—0.766) = 320 m/s
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| Example 4: Roller Coaster

1

A roller-coaster car is
released from rest at
the top of the first rise
and then moves freely

|- # —\\
"(9 f"; | \ ._ r.
with negligible friction. \ "1\ k
The roller coaster has a 2’
‘““‘?:}\‘_ ;;4
e .l |

circular loop of radius R
in a vertical plane.

(a) Suppose first that the car barely makes it around the loop:
at the top of the loop the riders are upside down and feel
weightless, i.e. 7= 0. Find the height of the release point
above the bottom of the loop, in terms of R so that 7= 0.
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| Example 4, cont

B
(a) At the top of the loop, the car and riders

melion

are 1n free fall. From Newton's 2nd law,

2
v

—mg =—m-— = V=,/gR
R N jorces
Energy is conserved between the release %
and the top of the loop: N
K+U, =K, +U,
1
0+mgh = Emv2 +mg(2R)

1
gthgR—l—ZgR = h=2.5R
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Example 4, cont

(b) Show that the normal force on the car at the bottom of the
loop exceeds the normal force at the top of the loop by six
times the weight of the car.

. 1 |
(b) Energy conservation : (bottom) mgh = 5 mv, (top) mgh= 5 mv’ + mg(2R)

= v =2gh v: =2gh—4gR
2 2
Newton's 2nd law : (bottom) n, —mg = +m%’ (top) —n, —mg =—m %
Substituting v, and v/, n, =mg(1+2h/R) n =mg(—5+2h/R)

= n, —n, = bmg

The normal force on each rider follows the same rule. Such a large normal

force is very uncomfortable for the riders. Roller coasters are therefore

built Aelical so that some of the gravitational energy goes into axial motion.
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(F) =0 &\Aﬁ‘% Unsiretched

Hooke's Law :

F), <0 NN e Stretched
‘T _ _ —As > )
= Force ex_erted by a Spring is om0 Bl Comproses
always directed opposite to the - A5 <0
displacement from equilibrium S
= Hooke’s Law: £ = —k4s )
= ASis the displacement from the | aesign ol (hls
equilibrium position \ sign of 4s.
= Kis the spring constant and As
measures the stiffness of the spring F ) = ~kAs

= Fis called the restoring force
= If it is released, it will oscillate back and forth
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. Measuring the Force Constant

n

ZF = F — mg = ma The spring’s
Y S y

restoring force
exactly balances

At equilibrium, . ik

the block.

‘3

As=1 — L,

a,=0, —kAs—mg=0 7 T L emen l S )

Therefore,

The relaxed
spring has

o % (N/m) length L.

Measure m and As to determine k.

31-Mar-08 Paik
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“A block of mass m

* v stretches the spring
to length L.



. Energy of Object on a Spring

-
7A% |
F = —k — s |
20z Zhems )y, s WMD) |
Use the chain rule, |<A—{
Si |
|
—k(s—s))= md—vé my v, |
ds dt “ds |
or —k(s—s,)ds=mvdv After: W\AN\D
|
Defineu =5 —s, = As, hence du = ds. I—A>|
| Sf
Integrating, ; ] ]

Sy Asy 1 As
—J'k(s—se)dS:—fkudu:—akuz‘mj:——k( )2+ k(As, )

fmvsdvs = %mvﬁ —%mvf = %mvf +%k(Asl. )2 = %mv; +%k(Asf)2
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| Elastic Potential Energy

) = Potential energy of an object attached to a
spring is
U, =2 k(AS)?
= The elastic potential energy depends on the

sqguare of the displacement from the spring’s
equilibrium position

= The same amount of potential energy can be
converted to kinetic energy if the spring is

extended or contracted by the same displacement

31-Mar-08 Paik p. 20



Example 5: Spring Gun Problem

A spring-loaded toy gun launches a 10 g
plastic ball. The spring, with spring Before: |
constant 10 N/m, is compressed by 10

cm as the ball is pushed into the barrel.
When the trigger is pulled, the spring is
released and shoots the ball out. After:

What is the ball’'s speed as it leaves the
barrel? Assume friction is negligible.

L L

1 1 1 1
> +5k(zlxi)2 =§mvf+5k(zle)2, O+Ek(xl—xe)2 =5mvf,+ 0

) :\/k(xl—xe) :\/(ION/m)(—O.lOm—Om) _

! m 0.010 kg
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Example 6: Pushing Apart

A spring with spring constant 2000 N/m is sandwiched
between a 1.0 kg block and a 2.0 kg block on a frictionless
table. The blocks are pushed together to compress the spring
by 10 cm, then released.

What are the velocities of the blocks as they fly apart?

Before:
m, = 1.0 kg m, = 2.0 kg
o0, =0 [T 2 |2
k = 2000 N/m
: Ax. = 10 cm
After: i .
(V}tr)| N e A A e K y (vm)2
<=1 NVWVWW B
31-Mar-08 Paik



Example 6, cont

From energy conservation,

1 2 1 2 1 2 _ 1 2 1 2 1 2
smy,, +5smv, +3k(Ax,)” = Tmy,, +3mv;, +3k(Axf)
1 2 _ 1 2 1 2
0+0+5k(Ax,) =5mv,, +3mv, , +0
From momentum conservation,
m

. - 2
O—mlv1f+m2v2f:>v1f— —mv
1

my,, + m,v,, = mlef +m,v

2.f2 2.f

Substituting this into the energy equation,

2
% 1(mzvz,fj +%mzvzz,f :%k(AxJza m2(1+;/lzjvzz,f :k(Axl)z

1

2
Var = K(An) =1.8m/s, Vis :—&VU =—-3.6m/s
=\ m, ) T

31-Mar-08 Paik
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. Example 7: Spring and Gravity
1
A 10 kg box slides 4.0 m down
the frictionless ramp shown in
the figure, then collides with a

spring whose spring constant is
250 N/m.

(@) What is the maximum compression of the spring?

(b) At what compression of the spring does the box have its
maximum velocity?
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| Example 7, cont

-1
(a) Choose the origin of the y ¥

coordinate system at the
point of maximum
compression. Take the

coordinate along the {((/,a’/"o
ramp to be s. 30°
K,+U,+U,=K +U_ +U,

0+1k(As) +0=0+0+mg(4.0 m+As)sin 30’

(125 N/m)(As )’ — (49 kg m/s* JAs —196 kg m®/s> = 0
As =146 m, —1.07 m (unphysical)

1= (4.0 m + Ay) sin 30°

31-Mar-08 Paik p. 25



| Example 7, cont

1 . Before After
(b) For this part of the problem, it » nn
is easiest to take the origin at g

the point where the spring is

at its equilibrium position. (/d(‘/,‘

K+U, +U_ =K +U_ +U_ 6 %=@0m+As) sin 30°
S g2 1 sl gl

Lmv® +mgy +Lk(As) =0+ mgy, +0
Li(As) —(mg sin30° As)+Lmv* —mg(4.0 msin30°)=0

Tofindv__ wrt As, take the derivative of this equation and put v _ 0.

dAs

kAs — mg sin 30 +mv%’s=o, As="&530 6196 m
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Before collision

| Elastic Collisions

i (m)—> i
s Both momentum and kinetic (a)
energy are conserved (U = 0)
mlvli + m2V2i — mlvlf + m2V2f After collision
V A .
12121212_”(1.
—my,. +—my, =—my, +—_-nm,y,. = 4 P
2 2 2 2 (b)

= Typically, there are two unknowns (v, and vy¢), SO
you need both equations: p;, = p; and K, = K;
= The kinetic energy equation can be difficult to use

= With some algebraic manipulation, the two equations
can be used to solve for the two unknowns
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Betfore collision

@ <=0
. 1-D Elastic Collisions @
‘ After collision

171f 272f 272i
2 2 2 2 1 (b)

1 1 1 1 —2O O_f,
K.=K.: —myv.+—m,v, =—myv. +—m,v,
— m, (Vlf — Vli)(vlf + vli) = —m, (sz B v2i)(V2f + Vzi)

Ps myv,, THLY,, =MV, + I,

f
= mW, =) =—m,(v, -V,
Combine the two equations, (v, +v,) = (v, +v,,)

Solve for v,. or v,, and substituting into the momentum equation,

m, —m, 2m, 2m, m, —m,
Vip = v, T+ Vais Vor = v, T Vai
m, +m, m, +m, m, +m, m, +m,
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1-D Elastic Collisions, cont

Tl)m =m,

Vv, = (O)vli +Myv, =v,, v,, =D)v, +(0)v, =v,
= Particles exchange velocities.
(2)m, <<m,,v, =0:
v, (=D, +2)0=—v., v, =)y, +(1)0=0
—> m, bounces back while m, remains stationary
3)m, >>m,,v, =0:

Vig ® (l)vn T (O)O = Vs Vyr ® (z)vli T (_ 1)0 — 2V11

212

112

= m, continues to move at v,, while m, moves at 2v,
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| 2-D Elastic Collisions

I "y
= Energy conservation: O— N
1/ 2 ml Vliz = 1/ 2 m1 Vlfz ~+ 1/ 2 /772 szz I\.\\“—"/;I

= Momentum conservation:
X. My Vy; = My Vye COSO + M, Vo COSP

(a) Before the collision

v 0 = mvi,sSing+m, vy Sing 0,508 i:'
= Note that we have 3 equations

., v pcos 6
and 4 unknowns 0
= We cannot solve for the unknowns \(DY"--M\ U9/ COS @
unless we have one final angle or | Jﬁ ¢
final velocity given Ty 0T,

(b) After the collision
31-Mar-08 Paik p. 30



. Example 8: Billiard Ball

-

Ap
In t

ayer wishes to sink target ball
ne corner pocket. The angle

to the corner pocket is 35°.

At what angle is the cue ball
deflected?

Energy conservation :

1,1 1

2 2
—my, =—my, 6 +—my
171 171 272
o B ) /

M

omentum conservation :

— 0]
m,v,, =m\v, .cos6+m,v, cos 35

0 =—my, smb+m,v, sin 35°
31-Mar-08 Paik
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| Example 8, cont

1
Since m, =m,,
— O p— . . O
v, =V, +V,,, v, =V, cosf+v, cos35° 0 =—v sind+v, sin35
sin 35°

From the third equation, v, , =v

Lf 2f

sinf
Substituting this into the first and second equations,

P .
Vfl:(sn,l 5 +1j Vs vh:(sm35 cos<9+cos35j

sin” @ sin @

2f

2 ) o
cos<9+cos35°j :Sn.l 35 +1.

sin 35°
sin @ sin” @
This leadsto cot@d =tan35° or & =55°.

31-Mar-08 Paik p. 32
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. Internal Energy

) s So far we have considered situations where
there is no friction

= In the absence of friction, the mechanical
energy is conserved: £= K+ U = constant

n Where friction is present, some energy is
converted to internal energy, usually heat
= Here K+ E # constant
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. Example 9: Bullet Fired into Block

=

A 5.00-g bullet moving with an
initial speed of 400 m/s is fired - MWW
into and passes through a 1.00- ,
kg block. The block, initially at |

rest on a frictionless, horizontal 5.0 cm— ’« .
surface, is connected to a spring |
of force constant 900 N/m. The =T
block moves 5.00 cm to the
right after impact.

Find (a) the speed at which the bullet emerges from the block
and (b) the mechanical energy converted into internal energy
in the collision.

400 m/s
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= =

Example 9, cont
1 1

(a) Energy conservation for the spring: — a1y = — i’

2
2 2
y - ke’ [(900 N/m)(0.05 m) T
M 1.00 kg

Momentum conservation in the collision : mv, = MV, + mv
~mv,— MV, (5.00x107kg)(400 m/s)—(1.00 kg)(1.5 m/s)
m 5.00x107kg

=100 m/s

V

(b) AE =AK +AU = 1(5.00x10" kg)|(100 m/s)’ — (400 m/s)’ |
+1(900 N/m)[(s.oo x102m) —(0 mY ] =-374]

The lost energy is due to the friction between the bullet
and block. The block heats up a little.
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. Energy Diagrams

‘ = Particle under a free fall

31-Mar-08
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- Energy Diagrams, cont

‘ = Particle attached to a spring

o= 0 ¥y
=

WWWO WS WO o

! v ! L]
e X 2
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. General Energy Diagram
N

Energy Energy

Particle starts from rest.

7

TE = E, \ Unstable equilibrium

/
N N /

Point of
maximum

Turning
speed : — X Stal?lfa | TE=E,
L/ equilibrium-3
T T T T X | | T X
X, X, X, X, X, X, % X,

Speeds> Slows> Speeds " “Slows }

up  down up down Equilibria are at points where
dU/dx = 0. At equilibria, F= 0.
Away from equilibria, dU/dx + 0
and F+ 0.
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. Molecular Bonding

) = Potential energy associated with the force
petween two neutral atoms in a molecule can
ne modeled by the Lennard-Jones function:

-2 (2]

—aj x (10719 m)

.7 3.0 8.b 4.0 4.5 5.0 2.5 6.0
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. Force Acting in a Molecule

U(107°])

-5.0 [~

,34 x(ll’]"” m)

-10 [~

-5

=20t
2.0 3.0 3.0 4.0 4.5 5.0 5.b 6.0

= The force is repulsive (positive) at small separations

= The force is zero at the point of stable equilibrium

= This is the most likely separation between the atoms in the molecule
(2.9 x 10-19m at minimum energy)

= The force is attractive (negative) at large separations

= At great distances, the force approaches zero
31-Mar-08 Paik p. 40




. Example 10: Hemispherical Hill

B

A sled starts from rest at
the top of the frictionless,
hemispherical, snow-
covered hill shown in the
figure.

|
|
I
| ¢ R
|
I
|

(a) Find an expression for the sled's speed when it is at

angle ¢.

(b) Use Newton's laws to find the maximum speed the sled
can have at angle ¢ without leaving the surface.

(c) At what angle ¢, does the sled "fly off" the hill?
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Example 10, cont

() K, +U, =K, +U,

1 2 1 2
2 My, +mgy1 =7 my, +mgyo

yﬂ= R!

Lmv’ + mgR cos ¢ =Lmv; + mgR
v, = \/2gR(1—cos ¢)

(b)Y F =ma,, n—mgcos¢=—

my’

= n=m cos¢—ﬁ
s R

n decreases as v increases. When n = 0, the sled leaves the hill.

n=20= v__ :\/gR cos @

(c) We have v for an arbitrary angle and vmx. Equating the two,

2 2

J2gR(1—cos g, ) =4+/gRcosd,. , cosd, = 3> @ =cos’ 3= 48.2°
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