Physics for Scientists and Engineers

Chapter 8
Dynamics II: Motion in a Plane

Spring, 2008
Ho Jung Paik

Dynamics in Two Dimensions

- Draw a free-body diagram
- Use Newton's second law in component form:

$$
\sum F_{x}=m a_{x}, \quad \sum F_{y}=m a_{y}
$$

- Solve for the acceleration
- If the acceleration is constant, use the twodimensional kinematic equations:

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{iy}} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{ix}}+a_{x} \Delta t & v_{\mathrm{fy}}=v_{\mathrm{iy}}+a_{y} \Delta t
\end{array}
$$

Projectile Motion

- In the absence of air resistance, a projectile has only the gravitational force acting on it:

$$
\vec{F}_{\mathrm{G}}=-m g \hat{\jmath}
$$

- From Newton's second law,

$$
a_{x}=\frac{\left(F_{G}\right)_{x}}{m}=0, \quad a_{y}=\frac{\left(F_{G}\right)_{y}}{m}=-g
$$

- The vertical motion is free fall, while the horizontal motion is one of constant velocity

Polar vs rtz Coordinates

- Usually the radial unit vector points outward, so

$$
\vec{a}_{r}=-\frac{v^{2}}{r} \hat{r}
$$

- The textbook uses an inward pointing radial unit vector, so

$$
\vec{a}_{r}=+\frac{v^{2}}{r} \hat{r}
$$

- Make sure you are consistent in the signs of the radial vectors

5-Mar-08
Paik
p. 4

Circular Motion Kinematics

Angular position

$$
\theta=s / r
$$

Angular velocity

$$
\begin{aligned}
& \omega=d \theta / d t \\
& v_{t}=\omega r
\end{aligned}
$$

Period $T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}$
Uniform circular motion

$$
\begin{aligned}
& v_{t}=\text { constant } \quad \omega=\text { constant } \\
& \theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega \Delta t
\end{aligned}
$$

Nonuniform circular motion

$$
\begin{aligned}
& \theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega_{\mathrm{i}} \Delta t+\frac{a_{t}}{2 r}(\Delta t)^{2} \\
& \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\frac{a_{t}}{r} \Delta t
\end{aligned}
$$

Paik
p. 5

Circular Motion Dynamics

Uniform Circular Motion

- v is constant.
- $\vec{F}_{\text {net }}$ points toward the center of the circle.
- The centripetal acceleration \vec{a} points toward the center of the circle.
 It changes the particle's direction but not its speed.

Nonuniform Circular Motion

- v changes.
- \vec{a} is parallel to $\vec{F}_{\text {net }}$.
- The radial component a_{r} changes the particle's direction.

- The tangential component a_{t} changes the particle's speed.

Uniform Circular Motion

- A force causing a centripetal acceleration acts toward the center of the circle

$$
\sum F_{r}=m a_{r}, \quad-F_{r}=-m \frac{v^{2}}{r}
$$

- It causes a change in the direction of velocity vector
- If the force vanishes, the object would move in a straight line tangent to the circle

Example 1: Amusement Park Ride

An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough such that any person inside is held up against the wall when the floor drops away. Experiment shows that the angular rotation rate has to be large enough, or the person falls.
What is the necessary rotation rate?
The coefficient of static friction between person and wall is μ_{s} and the radius of the cylinder is R.

Paik
p. 8

Example 1, cont

The friction holds the person up!
Radial: $\sum F_{r}=m a_{c}, \quad-n=-m \frac{v^{2}}{R}$
Vertical: $\sum F_{y}=m a_{y}, f_{s}-m g=m a_{y}$
For stability, $a_{y}=0$
Thus $f_{s, \text { max }}=\mu_{s} n \geq m g \Rightarrow \frac{m v^{2}}{R} \mu_{s} \geq m g$
$\Rightarrow v \geq \sqrt{\frac{g R}{\mu_{s}}} \Rightarrow \omega=\frac{v}{R} \geq \sqrt{\frac{g}{R \mu_{s}}}$

Example 2: Conical Pendulum

The object is in equilibrium in the vertical direction and undergoes uniform circular motion in the horizontal direction. Find the tangential speed.

$$
\begin{aligned}
& r: \sum F_{r}=-T_{r}=-\frac{m v^{2}}{r} \Rightarrow v=\sqrt{\frac{r T_{r}}{m}} \\
& y: \sum F_{y}=T_{y}-m g=0
\end{aligned}
$$

Since $T_{r}=T \sin \theta, T_{y}=T \cos \theta, r=L \sin \theta$

$$
v=\sqrt{\frac{L \sin \theta T \sin \theta}{m}}=\sqrt{L g \sin \theta \tan \theta}
$$

Flat Horizontal Curve

- Static friction supplies the centripetal force
(a)
- Maximum speed at which the car can negotiate the curve is $\nu_{\text {max }}=\sqrt{\mu_{s} g r}$ $r: \sum F_{r}=m a_{r}, \quad-f_{s}=-m \frac{v^{2}}{r}$
$y: \sum F_{y}=0, \quad n-m g=0$
$f_{s} \leq \mu_{s} n=\mu_{s} m g, m \frac{v^{2}}{r} \leq \mu_{s} m g \Rightarrow v \leq \sqrt{\mu_{s} g r}$

(b)
- Note, this does not depend on the mass of the car

Banked Curve

- A component of the normal force supplies the centripetal force
- With zero friction, the car can negotiate the curve with speed $v=\sqrt{r g \tan \theta}$
$r: \sum F_{r}=-n_{x}=-\frac{m v^{2}}{r}, y: \sum F_{y}=n_{y}-m g=0$
$n_{x}=n \sin \theta, \quad n_{y}=n \cos \theta=m g$
$v=\sqrt{\frac{r n_{x}}{m}}=\sqrt{\frac{r(m g / \cos \theta) \sin \theta}{m}}=\sqrt{r g \tan \theta}$
5-Mar-08
Paik
p. 12

Banked Curve, cont

- With zero friction, there is only one speed that a car can turn in a circle on a banked curve
- If the car went slower than $v=(r g \tan \theta)^{1 / 2}$, it would slide to a smaller radius, i.e. downhill
- If it went at a higher speed, it would slide to a larger radius
- In a real situation, friction would come into play preventing this sliding
- The necessary frictional force would, however, be less than if the road were flat

Example 3: Flat Curved Road

The cornering performance of an automobile is evaluated on a skidpad, where the maximum speed that a car can maintain around a circular path on a dry, flat surface is measured. Then the centripetal acceleration, also called the lateral acceleration, is calculated as a multiple of the free-fall acceleration g. A Dodge Viper GTS can negotiate a skidpad of radius 61.0 m at $86.5 \mathrm{~km} / \mathrm{h}$ (53.7 mph).
Calculate its maximum lateral acceleration.

$$
\begin{aligned}
a=\frac{v^{2}}{r} & =\frac{[(86.5 \mathrm{~km} / \mathrm{h})(1 \mathrm{~h} / 3600 \mathrm{~s})(1000 \mathrm{~m} / 1 \mathrm{~km})]^{2}}{61.0 \mathrm{~m}}\left(\frac{1 g}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\right) \\
& =0.966 g
\end{aligned}
$$

Example 4: Egg Crate on Truck

A crate of eggs is located in the middle of the flat bed of a pickup truck as the truck negotiates an unbanked curve in the road. The curve may be regarded as an arc of a circle of radius 35.0 m.

If the coefficient of static friction between the crate and truck is 0.600 , how fast can the truck move without the crate sliding?

The static friction supplies the centripetal force: $f_{s}=m v^{2} / r$. Since there is no vertical acceleration, $n-m g=0$. Therefore,

$$
\begin{aligned}
& f_{s}=m v^{2} / r \leq \mu_{s} n=\mu_{s} m g, \quad v \leq\left(\mu_{s} r g\right)^{1 / 2} . \\
& v \leq\left[(0.600)(35.0 \mathrm{~m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\right]^{1 / 2}=14.3 \mathrm{~m} / \mathrm{s}(32 \mathrm{mph})
\end{aligned}
$$

(a)

Circular Orbits

- Gravitational force provides the centripetal acceleration needed for a circular orbit:

$$
a_{r}=\frac{\left(v_{\text {orbit }}\right)^{2}}{r}=g
$$

Flat-earth approximation
(b)

- An object moves parallel to the surface with speed

$$
v_{\text {orbit }}=\sqrt{r g}
$$

- An object with any other speed will not follow a circular orbit

5-Mar-08
Paik

Loop-the-Loop

- At the bottom of the loop, the upward force experienced by the pilot is greater than his weight

$$
n_{b o t}-m g=m \frac{v^{2}}{r}, n_{b o t}=m g\left(1+\frac{v^{2}}{r g}\right)
$$

- At the top of the circle, the force exerted on the pilot is less

$$
-n_{t o p}-m g=-m \frac{v^{2}}{r}, n_{t o p}=m g\left(\frac{v^{2}}{r g}-1\right)
$$

- $n_{\text {top }}$ must be positive lest the pilot should fall

Example 5: Water Pail

A pail of water is rotated in a vertical circle of radius 1.00 m . What is the minimum speed of the pail at the top of the circle if no water is to spill out?

Write down Newton's 2nd Law for the water, assuming the water, like the bucket, goes around in circular motion.
$\sum F_{r}=-n-m g \sin \theta=m a_{r}=-m \frac{v^{2}}{r}$
$\Rightarrow n=m \frac{v^{2}}{r}-m g \sin \theta=m g\left(\frac{v^{2}}{g r}-\sin \theta\right)$

Paik
p. 18

Example 5, cont

Suppose $v \leq(g r)^{1 / 2}=\left(9.80 \mathrm{~m} / \mathrm{s}^{2} \times 1.00 \mathrm{~m}\right)^{1 / 2}=3.13 \mathrm{~m} / \mathrm{s}$.
Then, at some angle $\theta, n=m g\left(\frac{v^{2}}{g r}-\sin \theta\right) \leq 0$.
For example, if $v=2.63 \mathrm{~m} / \mathrm{s}, n=0$ for $\theta=45^{\circ}$.
Once $n=0$ is reached, the bucket no longer pushes on the water to make it go in a circle with the bucket. At this point, the radial acceleration of the water becomes $a_{r}=-g \sin \theta$ and the water falls away from the bucket. In order for the water to stay in the bucket at $\theta=90^{\circ}$,

$$
v \geq(r g)^{1 / 2}
$$

Non-uniform Circular Motion

- The acceleration and force have tangential components
- \mathbf{F}_{r} produces the centripetal acceleration
- \mathbf{F}_{t} produces the tangential acceleration
- $\Sigma \mathbf{F}=\Sigma \mathbf{F}_{r}+\Sigma \mathbf{F}_{t}$

Vertical Circle Under Gravity

- The gravitational force exerts a tangential force on the object
- Look at the components of F_{g}
- Example: pendulum
- The tension at any point can be found:

$$
T=m\left(\frac{v^{2}}{R}+g \cos \theta\right)
$$

Example 6: Pendulum

A $2.00-\mathrm{kg}$ ball is tied to a string which is 0.500 m long. The ball swings in a vertical circle under the influence of gravity. When the ball makes an angle of 20.0° with the vertical, its speed is $1.50 \mathrm{~m} / \mathrm{s}$.
a) What is the tangential acceleration, a_{θ} ?
b) What is the radial acceleration, a_{r} ?
c) What is the total acceleration?
d) What is the tension in the string?

e) What is a_{θ} when the ball passes through the vertical?

Example 6, cont

(a) Tangential acceleration

$$
\begin{aligned}
& \sum \vec{F}_{\theta}=m g \sin \theta \hat{\theta}=m \vec{a}_{\theta}, \quad \vec{a}_{\theta}=+g \sin \theta \hat{\theta} \\
& \left|\vec{a}_{\theta}\right|=9.80 \mathrm{~m} / \mathrm{s}^{2} \sin 20.0^{\circ}=+3.35 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b) Radial acceleration

$$
\vec{a}_{r}=-\frac{v_{\theta}^{2}}{r} \hat{r}=-\frac{(1.50 \mathrm{~m} / \mathrm{s})^{2}}{0.500 \mathrm{~m}} \hat{r}=\left(-4.50 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{r}
$$

(c) Total acceleration

$$
\begin{aligned}
& a_{\text {total }}=\sqrt{a_{r}^{2}+a_{\theta}^{2}}=\sqrt{3.35^{2}+4.50^{2}}=5.61 \mathrm{~m} / \mathrm{s}^{2} \\
& \phi=\tan ^{-1}\left(a_{\theta} / a_{r}\right)=\tan ^{-1}(3.35 / 4.50)=36.7^{\circ}
\end{aligned}
$$

Example 6, cont

(d) Tension in the string

$$
\sum F_{r}=m a_{r},-T+m g \cos \theta=-m \frac{\nu^{2}}{r}
$$

$$
T=m\left(g \cos \theta+\frac{v^{2}}{r}\right)=2.00\left(9.80 \cos 20.0^{\circ}+\right.
$$

(e) Angular acceleration at $\theta=0$

$$
\begin{aligned}
\sum \vec{F}_{\theta} & =-m g \sin \theta \hat{\theta}=m \vec{a}_{\theta}, \vec{a}_{\theta}=-g \sin \theta \hat{\theta} \\
& \Rightarrow \operatorname{At} \theta=0^{\circ}, a_{\theta}=0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Fictitious Forces

- A fictitious force results from an accelerated frame of reference
- A force appears to act on an object, but you cannot identify the agent for this force
- Although fictitious forces are not real forces, they have real effects
- Examples:
- Centrifugal force: Objects in the car turning a corner do slide and you feel pushed to the outside
- The Coriolis force is responsible for the rotation of weather systems and ocean currents

Linear Accelerating System

- Inertial observer sees
$\sum F_{x}=T \sin \theta=m a$ acceleration
$\sum F_{y}=T \cos \theta-m g=0$
$\tan \theta=a / g$
- Non-inertial observer sees fictitious force
$\sum F_{x}^{\prime}=T \sin \theta-m a=0$
$\sum F_{y}^{\prime}=T \cos \theta-m g=0$
$\tan \theta=m a / m g$

(a)

5-Mar-08

Rotating System

(a)

(b)

- Inertial observer sees $\sum F_{r}=-T=-m\left(\frac{v^{2}}{r}\right.$ - centripetal
- Non-inertial observer sees $\left.\sum F_{r}{ }^{\prime}=-T+m \frac{v^{2}}{r}\right)=0$ centrifugal force

Paik
p. 27

"Centrifugal Force"

As seen from the car

When you move alon졐 a curved path, unattwhed objects tend to mowe towand the outske of the curve.

5-Mar-08
Paik

As seen from a helicopter

A person in a hovering helicopter above the car could describe the movement of the objects as just going straight while the car
travels in a curved path
p. 28

"Coriolis Force"

- An apparent force caused by changing the radial position of an object in a rotating frame
- The result is the curved path of the object

The view according to an observer fixed with respect to Earth

The view according to an observer fixed with respect to the rotating platform

Air and Ocean Currents

Southern Hemisphere
5-Mar-08
Paik
p. 30

