What would happen to the voltage if you first disconnected the battery and then pulled the plates further apart?

1. The potential difference would increase.
2. The potential difference would decrease.
3. The potential difference would stay the same.
What would happen to the voltage if you stayed connected to the battery and then pulled the plates further apart?

1. The potential difference would increase.
2. The potential difference would decrease.
3. The potential difference would stay the same.
Three capacitors 1, 2, 3 are connected to identical batteries so they each have the same ΔV. Their plate areas and separations are as follows: $A_2 = 2A_1 = 2A_3; d_1 = d_2 = 2d_3$.

How do the E fields inside them rank?

1. $E_2 = E_3 > E_1$
2. $E_3 > E_1 = E_2$
3. $E_2 > E_1 > E_3$
4. $E_2 > E_1 = E_3$
5. $E_1 = E_2 > E_3$
6. $E_1 = E_2 = E_3$
7. Other
Three capacitors 1, 2, 3 are connected to identical batteries so they each have the same ΔV. Their plate areas and separations are as follows: $A_2 = 2A_1 = 2A_3; d_1 = d_2 = 2d_3$.

How do the net charges on them rank?

1. $Q_2 = Q_3 > Q_1$
2. $Q_3 > Q_1 = Q_2$
3. $Q_2 > Q_1 > Q_3$
4. $Q_2 > Q_1 = Q_3$
5. $Q_1 = Q_2 > Q_3$
6. $Q_1 = Q_2 = Q_3$
7. Other
Three capacitors 1, 2, 3 are connected to identical batteries so they each have the same ΔV. Their plate areas and separations are as follows: $A_2 = 2A_1 = 2A_3; d_1 = d_2 = 2d_3$.

How do the positive charges on their top plate rank?

1. $Q_2 = Q_3 > Q_1$
2. $Q_3 > Q_1 = Q_2$
3. $Q_2 > Q_1 > Q_3$
4. $Q_2 > Q_1 = Q_3$
5. $Q_1 = Q_2 > Q_3$
6. $Q_1 = Q_2 = Q_3$
7. Other
Three capacitors 1, 2, 3 are connected to identical batteries so they each have the same ΔV. Their plate areas and separations are as follows: $A_2 = 2A_1 = 2A_3$; $d_1 = d_2 = 2d_3$.

How do the voltage drops across their plates rank?

1. $\Delta V_2 = \Delta V_3 > \Delta V_1$
2. $\Delta V_3 > \Delta V_1 = \Delta V_2$
3. $\Delta V_2 > \Delta V_1 > \Delta V_3$
4. $\Delta V_2 > \Delta V_1 = \Delta V_3$
5. $\Delta V_1 = \Delta V_2 > \Delta V_3$
6. $\Delta V_1 = \Delta V_2 = \Delta V_3$
7. Other
What is the dielectric constant for air?

1. Close to 0
2. Between 0 and 1
3. Close to 1
4. Between 1 and HUGE
5. HUGE
What is the dielectric constant for an insulator?

1. Close to 0
2. Between 0 and 1
3. Close to 1
4. Between 1 and HUGE
5. HUGE
What is the dielectric constant for a conductor?

1. Close to 0
2. Between 0 and 1
3. Close to 1
4. Between 1 and HUGE
5. HUGE
What happens to the capacitance of a capacitor if you put an insulator inside?

1. It increases
2. It decreases
3. It stays the same
4. I have no idea