Week 6

Outline

Electric Fields

Electric Potential

Electric fields

Electric Field defined at every point in space!

Concept of a "field" is important.

Think about the temperature in this room Temperature is a scalar field. $T(\vec{\mathbf{r}}) = T(x, y, z)$

Fields: Generalizing functions

In Calculus and Analytical Geometry Class you learned about functions.

f(x): for each value of x the function returns a value for f

What if the function depends on more than one variable x?

Example: T(x, y, z) Temperature at different points in this room.

T(x, y, z) is called a scalar field.

E(x, y, z) is called a vector field. The electric field

What does $T(\vec{r})$ mean?

$$\vec{r}$$
 $-(x,y,z)$

a vector that locates an arbitrary point in the class room

$$T(\vec{r}) = T(x, y, z)$$

is the value of
temperature at point
 $\vec{r} - (x, y, z)$

What does $\vec{E}(\vec{r})$ mean?

$$\vec{r}$$
 - (x,y,z)

a vector that locates an arbitrary point in the class room

$$\vec{E}(\vec{r}) = \vec{E}(x, y, z)$$

is the value of electric field at point $\vec{r} - (x, y, z)$

A charge q placed at point \vec{r} experiences a force $\vec{F} = q\vec{E}(\vec{r})$

Units MKS-SI

The force F on a charge q at position r

But, where does volts come from?

What does $\vec{E}(\vec{r})$ mean?

$$\vec{r}$$
 - (x,y,z)

a vector that locates an arbitrary point in the class room

$$\vec{E}(\vec{r}) = \vec{E}(x, y, z)$$

is the value of electric field at point $\vec{r} - (x, y, z)$

A charge q placed at point \vec{r} experiences a force $\vec{F} = q\vec{E}(\vec{r})$

Foothold ideas: Fields

- A *field* is a concept we use to describe anything that exists at all points in space, even if no object is present.
- A *field* can have a different magnitude at different points in space. (and if it's a vector field, direction). Examples: temperature, wind speed, wind direction
- A gravitational, electric, or magnetic field is a force field. Fields allow us to predict the force that a test object would experience. The field does not depend on what test object is used.

A Field has a value at a position in space " r "

The electric field at a particular point in space

- A. Depends only on the magnitude of the test charge used to measure it.
- B. Depends only on the sign of the test charge used to measure it.
- c. Depends on both the sign and magnitude of the test charge used to measure it.
- D. Does not depend on the test charge used to measure it.
 - E. None of the above

Physics 132

10

Electric field vectors surrounding a positive charge

Arrow gives direction of E field.

Darker arrow indicate magnitude of E field

Electric field vectors surrounding a negative charge.

Draw the electric field vectors around a dipole.

Whiteboard, TA & LA

Draw the electric field vectors around a dipole.

Field directed to left here

Whiteboard, TA & LA

Everyone knows the magnitude of the electric field decreases as r⁻² where r is the distance from the observation point to the source charge.

$$\vec{\mathbf{E}}(\vec{\mathbf{r}}) = \sum_{q_j} \frac{Kq_j}{r_j^2} \hat{\mathbf{r}}_{\mathbf{j}}$$

Potential energy

Remember our relation between force and work?

What is the work done by a force in moving an object a distance Δx ?

$$W = \mathbf{F} \cdot \Delta \mathbf{x} = q \mathbf{E} \cdot \Delta \mathbf{x}$$

Potenial energy difference

$$\Delta U = -q\mathbf{E} \cdot \Delta \mathbf{x}$$

A positive charge might be placed at one of three spots in a region. It feels the same force (pointing to the left) in each of the spots. How does the electric potential energy, $U_{\rm elec}$, on the charge at positions 1, 2, and 3 compare?

- A. U is greatest at 1
- B. U is greatest at 2
- c. U is greatest at 3
- D. U = 0 at all three spots
- E. U ≠ 0 but same at all three spots
- F. Not enough information

Electrostatic Potential

Electric Field and Electric Potential defined at every point in space!

Potential energy of charge q

$$U(\vec{\mathbf{r}}) = q \sum_{q_i} \frac{Kq_j}{r_i}$$

Electric potential at point **r**

$$V(\vec{\mathbf{r}}) = U(\vec{\mathbf{r}}) / q = \sum_{q_j} \frac{Kq_j}{r_j}$$

Positive test charge with positive source

Potential energy of a positive test charge near a positive source.

Electric Potential of a positive test charge near a positive source.

What happens when I change the sign of the test charge?

Physics 132

- · · · A
- Potential energy graph changes
- B. Electrostatic potential graph changes
- c. Both change
- D. Neither of the graphs changes

Negative test charge

Potential energy of a negative test charge near a positive source.

Electric Potential of a negative test charge near a positive source.

- The potential energy between two charges is
- $U_{12}^{elec} = \frac{Kq_1q_2}{No \ \text{vectors}}$ $\blacksquare \text{ The potential energy between many charges}$ is

Just add up all pairs!

Foothold ideas: Electrostatic potential energy and potential

- The potential energy between two charges is
- The potential energy of many charges is
- The potential energy added by adding a test charge q is

$$U_{12}^{elec} = \frac{k_{C}Q_{1}Q_{2}}{r_{12}}$$

$$U_{12...N}^{elec} = \sum_{i < j=1}^{N} \frac{k_{C}Q_{i}Q_{j}}{r_{ij}}$$

$$\Delta U_q^{elec} = \sum_{i=1}^{N} \frac{k_C q Q_i}{r_{iq}} = qV$$
 Potentials

Foothold ideas:

Electrostatic Potential energy and Electrostatic Potential

- Again we focus our attention on a test charge!
- Usual definition of "electrostatic potential energy": How much does the energy of our system change if we add the test charge

It's really a change in potential energy!
$$U_{q_0}^{elec}(\vec{r_0}) = \frac{k_C q_0 q_1}{r_{01}} + \frac{k_C q_0 q_2}{r_{02}} + ... + \frac{k_C q_0 q_N}{r_{0N}} = \sum_{i=1}^{N} \frac{k_C q_0 q_i}{r_{0i}}$$

- We ignore the electrostatic potential energies of all other pairs (since we assume the other charges do not move)
- We can pull the test charge magnitude out of the equation and ohtain en electrostatic notential

$$V(\vec{r}_0) = \frac{U_{q_0}^{elec}(\vec{r}_0)}{q_0} = \frac{k_C q_1}{r_{01}} + \frac{k_C q_2}{r_{02}} + \dots + \frac{k_C q_N}{r_{0N}} = \sum_{i=1}^{N} \frac{k_C q_i}{r_{0i}}$$

Two charges are brought separately into the vicinity of a charge +Q. First, charge +q is brought to point A a distance r from +Q.

Next, +q is removed and a charge +2q is brought to

point B a distance 2r from +Q.

Compared with the <u>electrostatic potential</u> of the charge at A, that of the charge at B is

- 🙂 B. smaller
 - c. the same
 - D. You can't tell from the information given

