■ Theme Music: Duke Ellington Take the A Train

■ Cartoon: Chic Young

Blondie

Blondie

5/17/13

Physics 132

1

Previous Exam Results

	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Exam 1	49%	65%	38%	81%	46%
Exam 1 (MU)	90%	34%	59%	68%	84%
Exam 2	80%	66%	54%	42%	71%
Exam 2 (MU)	$*$	$*$	$*$	$*$	$*$

* Ex2MU was taken by too few students to be meaningful; but note that performance was poorest on problem 3.

Final exam

- The final exam will be 200 points and will be cumulative throughout the course,
- with about half of the emphasis on material covered in the first and second exam and
- With about half of the emphasis on material covered since the second exam.
■ Review slides for the new material follows.
- For reviews slides for earlier material see the slides posted for the dates of the first and second hour exams.

Foothold principles: Mechanical waves 2

■ Superposition: when one or more disturbances overlap, the result is that each point displaces by the sum of the displacements it would have from the individual pulses. (signs matter)

- Beats: When sinusoidal waves of different frequencies travel in the same direction, you get variations in amplitude (when you fix either space or time) that happen at a rate that depends on the difference of the frequencies.
- Standing waves: When sinusoidal waves of the same frequency travel in opposite directions, you get a stationary oscillating pattern with fixed nodes.

Foothold principles: Standing Waves

\square Some points in the pattern

$$
y(x, t)=2 A \sin (k x) \cos (\omega t)
$$

(values of x for which $k x=n \pi$) are always 0 (nodes)
$■$ We can tie the string down at these points and still let it wiggle in this shape. (normal modes or harmonics)
■ To wiggle like this (all parts oscillating together) we need

$$
k L=n \pi \quad \text { or } \quad L=n \frac{\lambda}{2}
$$

■ We still have

$$
v_{0}=\omega / k \quad \text { that is } \quad v_{0}=\lambda f
$$

Light: Three models

■ Newton's particle model (rays)

- Models light as bits of energy traveling very fast in straight lines. Each bit has a color. Intensity is the number of bits you get.
■ Huygens's/Maxwell wave model
- Models light at waves (transverse EM waves). Color determined by frequency, intensity by square of a total oscillating amplitude. (Allows for cancellation interference.)
- Einstein's photon model
- Models light as "wavicles" == quantum particles whose energy is determined by frequency and that can interferer with themselves.

Foothold Ideas: The Photon Model

- When it interacts with matter, light behaves as if it consisted of packets (photons) that carry both energy and momentum according to:

$$
E=\hbar \omega \quad p=\hbar k \quad \hbar=\frac{h}{2 \pi}
$$

$$
E=h f \quad p=\frac{E}{c}=\frac{h}{\lambda}
$$

with $h c \sim 1234 \mathrm{eV}-\mathrm{nm}$.

- These equations are somewhat peculiar. The left side of the equations look like particle properties and the right side like wave properties.

Foothold ideas: Line Spectra

■ When energy is added to gases of pure atoms or molecules by a spark, they give off light, but not a continuous spectrum.

- They emit light of a number of specific colors - line spectra.
- The positions of the lines

Foothold Ideas: The Nature of Matter

- Atoms and molecules naturally exist in
 states having specified energies. EM radiation can be absorbed or emitted by these atoms and molecules.
■ When light interacts with matter, both energy and momentum are conserved.
\square The energy of radiation either emitted or absorbed therefore corresponds to the difference of the energies of states.

Foothold Ideas 1: Ray Model -- The Physics

■ Certain objects (the sun, bulbs,...) give off light.
■ Light can travel through a vacuum.

- In a vacuum light travels in straight lines (rays).

■ Each point on a rough object scatters light, spraying it off in all directions.

- A polished surface reflects rays back again according to the rule: The angle of incidence equals the angle of reflection.
- When entering a transparent medium, a light ray changes its direction according to the rule $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
- " n " is a property of the medium and $n_{\text {vac }}=1$.

Foothold Ideas 2: Ray Model-- The Psycho-physiology

■ We only see something when light coming from it enters our eyes.
■ Our eyes identify a point as being on an object when rays traced back converge at that point.

- (We use other clues as well - and some people's brains do not merge binocular vision.)

Foothold Ideas 3: Mirrors

- For most objects, light scatters in all directions. For some objects (mirrors) light scatters from them in controlled directions.

- A polished surface reflects rays back again according to the rule: The angle of incidence equals the angle of reflection.

Where does an object seen in a mirror appear to be?

Kinds of Images: Virtual

\square In the case of the previous slide, the rays seen by the eye do not actually meet at a point but the brain, only knowing the direction of the ray, assumes it came directly form an object.
\square When the rays seen by the eye do not meet, but the brain assumes they do, the image is called virtual.

- If a screen is put at the position of the virtual image, there are no rays there so nothing will be seen on the screen.

Kinds of Images: Real

\square In the case of the previous slide, the rays seen by the eye do in fact converge at a point.
\square When the rays seen by the eye do meet, the image is called real.
■ If a screen is put at the real image, the rays will scatter in all directions and an image can be seen on the screen, just as if it were a real object.

Unifying Equation for Mirrors

■ If we treat our mirror quantities as "signed" and let the signs carry directional information, we can unify all the situations in a single set of equations.

Unifying Equation for Lenses

■ If we treat our lens quantities as "signed" and let the signs carry directional information, we can unify all the situations in a single set of equations.

Foothold ideas 1: Wave Model -- Huygens' Principle

- The critical structure for waves are the lines or surfaces of equal phases: wavefronts.
■ Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets).
■ The sum of the wavelets produces a new wavefront.
■ The waves are slower in a denser medium.
- The reflection principle and Snell' s law follow from the assumptions of the wave model.

Foothold ideas 2: Wave Model -- EM waves

■ Point source:

- An oscillating charge sends out a sphere of oscillating EM wave.
■ Wavelets:
- Any point in space with an oscillating EM wave sends out a sphere of oscillating EM wave.

■ Superposition:

- The resulting pattern at any point is the sum of the waves received.

$\Delta r=a \sin \theta \approx a \theta$

http://www.wiley.com/college/halliday/0470469080/

Foothold Ideas:
 The Probability Framework for Light

- Both the wave model and the photon have an element of truth.
- Maxwell's equations and the wave theory of light yield a function - the electric field - whose square (the intensity of the light) is proportional to the probability of finding a photon.
- No theory of the exact propagation of individual photons exist. This is the best we can do: a theory of the probability function for photons.

Photons, $W=498 \mathrm{~nm}, S=9960.0000 \mathrm{~nm}, N=37$

Photons, $W=498 \mathrm{~nm}, \mathrm{~S}=9960.0000 \mathrm{~nm}, \mathrm{~N}=119$

Photons, $W=498 \mathrm{~nm}, \mathrm{~S}=9960.0000 \mathrm{~nm}, \mathrm{~N}=234$

Photons, $W=498 \mathrm{~nm}, S=9960.0000 \mathrm{~nm}, \mathrm{~N}=996$ E=Energy, W=Wavelength, S=Slit Separation, $\mathrm{H}=$ \# Farticles

Foothold Ideas:

The Probability Framework

■ DeBroglie's waves have to be generalized to 3D and potential energy included. The result is the Schrödinger equation.

- Schrödinger's equation is the wave theory of matter. It's solution yield the wave function whose square is proportional to the probability of finding an electron.
- No theory of the exact propagation of individual electrons exist. This is the best we can do: a theory of the probability function for electrons.

