May 1, 2013 Physics 132 Prof. E. F. Redish

■Theme Music: Kronos Quartet Tashweesh (Interference) ■Cartoon: Pat Brady Rose is Rose

5/1/13

Physics 132

1

Foothold wave ideas: Huygens' Principle

■ The critical structure for waves are the lines or surfaces of equal phases: wavefronts.
■ Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets).
■ The sum of the wavelets produces a new wavefront.
■ The waves are slower in a denser medium.

- The reflection principle and Snell's law follow from the assumptions of the wave model.

Beats

■ When we add two waves of the same frequency,

- if their phases differ by
$0,2 \pi, 4 \pi, \ldots$ they add (constructive interference).

- if their phases differ by $\pi, 3 \pi, 5 \pi, \ldots$ they cancel

Phase difference and path difference

■ Our two waves

$$
y=A \sin \left(k r_{1}-\omega t\right)+A \sin \left(k r_{2}-\omega t\right)
$$

from different
$y=A \sin \left(\phi_{1}-\omega t\right)+A \sin \left(\phi_{2}-\omega t\right)$
sources have a phase difference, $\phi_{1}-\phi_{2}$ because we are different distances from the two sources.
\square The phase difference depends on the path difference:

$$
\phi_{1}-\phi_{2}=k r_{1}-k r_{2}=k\left(r_{1}-r_{2}\right)=k \Delta r=2 \pi \frac{\Delta r}{\lambda}
$$

A First Test: Interference

A First Test: Interference

When $\Delta \mathrm{r}=\mathrm{n} \lambda$, waves add.

When $\Delta \mathrm{r}=(\mathrm{n}+1 / 2) \lambda$, waves cancel

Slits are really much, much closer than shown

