Calvin \& Hobbes

Foothold principles:

Mechanical waves 2

■ Superposition: when one or more disturbances overlap, the result is that each point displaces by
 the sum of the displacements it would have from the individual pulses. (signs matter)

- Beats: When sinusoidal waves of different frequencies travel in the same direction, you get variations in amplitude (when you fix either space or time) that happen at a rate that depends on the difference of the frequencies.
- Standing waves: When sinusoidal waves of the same frequency travel in opposite directions, you get a stationary oscillating pattern with fixed nodes. 4/17/13

Beats

http://www.mta.ca/faculty/science/physics/suren/Beats/Beats.html

Adding Sinusoidal Waves going in opposite directions

\square When we add two sinusoidal waves.

$$
y=A \sin (k x-\omega t)+A \sin (k x+\omega t)
$$

Using trig identities ($\mathrm{sc}+\mathrm{cs} . .$.) we can show

$$
y(x, t)=2 A \sin (k x) \cos (\omega t)
$$

\square For each point on the string labeled " x " it oscillates with an amplitude that depends on where it is - but all parts of the string go up and down together.

Foothold principles: Standing Waves

■ Some points in the pattern

$$
y(x, t)=2 A \sin (k x) \cos (\omega t)
$$

(values of x for which $k x=n \pi$) are always 0 (nodes)
■ We can tie the string down at these points and still let it wiggle in this shape. (normal modes or harmonics)

- To wiggle like this (all parts oscillating together) we need

$$
k L=n \pi \quad \text { or } \quad L=n \frac{\lambda}{2}
$$

■ We still have

$$
v_{0}=\omega / k \quad \text { that is } v_{0}=\lambda f
$$

Explore with a simulation

If we start our system in a sinusoidal shape it will undergo period motion - repeat itself.
http://phet.colorado.edu/en/simulation/normal-modes

Explore with a simulation

http://phet.colorado.edu/simulations/sims.php?sim=Wave_on_a_String
4/17/13
Physics 132

Explore with a simulation

http://phet.colorado.edu/en/simulation/fourier

