April 5, 2013 Physics 132 Prof. E. F. Redish
■ Theme Music: Superchunk The Question is How Fast
■ Cartoon: Bill Amend Foxtrot

4/5/13

1

Foothold principles: Mechanical waves

- Key concept: We have to distinguish the motion of the bits of matter and the motion of the pattern.

- Mechanism: the pulse propagates by each bit of string pulling on the next.
- Pattern speed: a disturbance moves into a medium with a speed that depends on the properties of the medium (but not on the shape of the disturbance)

$$
v_{0}=\sqrt{T / \mu} \quad \begin{aligned}
& v_{0}=\text { speed of pulse } \\
& T=\text { tension of spring } \\
& \mu=\text { mass density of spring }(M / L)
\end{aligned}
$$

■ Matter speed: the speed of the bits of matter depend on both the size and shape of the pulse and pattern speed.

Dimensional analysis

■ Square brackets are used to indicate a quantities dimensions

- mass (\mathcal{M}), length (L), or time (\mathcal{T})
$-[m]=\mathscr{M}$
$-[L]=\mathcal{L}$
$-[t]=\mathcal{T}$
$-[F]=\mathcal{M L} / \mathcal{T}^{2}$

■ Build a velocity using mass (m), length (L), and tension (T) of the string:

$$
\begin{aligned}
& -[v]=\mathcal{L} / \mathcal{T} \\
& -[T]=\mathcal{M} \mathcal{L} / \mathcal{T}^{2} \\
& -[T / m]=\mathcal{L} / \mathcal{T}^{2} \\
& -[T L / m]=\mathcal{L}^{2} / \mathcal{T}^{2}
\end{aligned}
$$

$$
v_{0}^{2}=\frac{T L}{m}
$$

$$
\text { or, using } \mu=m / L \quad v_{0}=\sqrt{\frac{T}{\mu}}
$$

What controls the widths of the pulses in time and space?

Width of a pulse

- The amount of time the demonstrator's hand was displaced up and down determines the time width of the t-pulse, Δt.
■ The speed of the signal propagation on the string controls the width of the x-pulse, ΔL.
- The leading edge takes off with some speed, v_{0}.
- The pulse is over when the trailing edge is done.
- The width is determined by "how far the leading edge got to" before the displacement was over.

$$
\Delta L=v_{0} \Delta t
$$

What controls the speed of the beads?

Speed of a bead

- The speed the bead moves depends on how fast the pulse is moving and how far it needs to travel to stay on the string.

Doing the math:

Displacements on an elastic string / spring
■ Each bit of the string can move up or down (perpendicular to its length).

- To describe the motion of the string we need to describe the motion of each bit of the string at every instant of time.
■ We therefore need to tell both which bit and when in order to specify a displacement.

$$
y_{i}=f_{i}(t) \quad y=f(x, t)
$$

