

Mathematical structure

\square Express $a=F^{\text {net }} / m$ in terms of derivatives.

$$
\frac{d^{2} x}{d t^{2}}=-\omega_{0}^{2} x
$$

\square Except for the constant, this is like having a functions that is its own second derivative.

$$
\frac{d^{2} f}{d t^{2}}=-f
$$

\square In calculus, we learn that $\sin (\mathrm{t})$ and $\cos (\mathrm{t})$ work like this. How about: $x=\cos t$?

Interpreting the Result

We can easily take the derivatives to show that our solution $x(t)=A \cos \left(\omega_{0} t\right) \quad$ satisfies the N 2 equations
What do the various terms mean?
$-A$ is the maximum displacement - the amplitude.

- What is ω_{0} ? If T is the period (how long it takes to go through a full oscillation) then

$$
\begin{aligned}
& \omega_{0} t: 0 \rightarrow 2 \pi \\
& t \quad: 0 \rightarrow T \\
& \omega_{0} T=2 \pi \quad \Rightarrow \quad \omega_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

Graphs: $\sin (\theta)$ vs $\cos (\theta)$

Which is which? How can you tell?
\square The two functions sin and cos are derivatives of each other (slopes), but one has a minus sign. Which one?
How can you tell?

Graphs: $\sin (\theta)$ vs $\sin \left(\omega_{0} t\right)$

\square For angles, $\theta=0$ and $\theta=2 \pi$ are the same so you only get one cycle.
\square For time, t can go on forever so the cycles repeat.

What does
changing ω_{0} do to this graph?
$\cos \left(\omega_{0} t\right)$

cs 12

Interpreting the Result

What about the starting point?
Using cos means you always start at a peak when $t=0$. That might not always be true.

The Long Pendulum

Pendulum motion energy

$$
\begin{aligned}
& E_{0}=\frac{1}{2} m v^{2}+m g h=\frac{1}{2} m v^{2}+m g L(1-\cos \theta) \\
& \cos \theta \approx 1-\frac{1}{2} \theta^{2} \\
& E_{0} \approx \frac{1}{2} m v^{2}+\frac{1}{2}[m g L] \theta^{2} \\
& \theta \approx \sin \theta=\frac{x}{L} \\
& E_{0} \approx \frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \quad k=\frac{m g}{L}
\end{aligned}
$$

Same as mass on a spring!
Just with a different $\omega_{0}{ }^{2}=k / m=g / L$

What's the period? Why doesn't it depend on m ?

