March 27, 2013

Physics 132

Prof. E. F. Redish

- **Theme Music:** Fleetwood Mac
 Silver Springs

- **Cartoon:** Pat Brady
 Rose is Rose

Quiz 6

<table>
<thead>
<tr>
<th></th>
<th>6.1</th>
<th>6.2.1</th>
<th>6.2.2</th>
<th>6.2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>B</td>
<td>5%</td>
<td>70%</td>
<td>25%</td>
<td>55%</td>
</tr>
<tr>
<td>C</td>
<td>45%</td>
<td>5%</td>
<td>45%</td>
<td>15%</td>
</tr>
<tr>
<td>D</td>
<td>10%</td>
<td>20%</td>
<td>15%</td>
<td>25%</td>
</tr>
<tr>
<td>E</td>
<td>45%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>F</td>
<td>65%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avg. = 5.6

Prof. E. F. Redish
Foothold ideas:
Kirchhoff’s principles

1. Flow rule: The total amount of current flowing into any volume in an electrical network equals the amount flowing out.
2. Ohm’s law: in a resistor, $\Delta V = IR$
3. Loop rule: Following around any loop in an electrical network the potential has to come back to the same value (sum of drops = sum of rises).
 - The Constant Potential Corollary: Along any part of a circuit with 0 resistance, $\Delta V = 0$, i.e., V is constant.

Foothold ideas:
Harmonic oscillation

- There is an equilibrium (balance) point where the mass can stay without moving.
- Whichever way the mass moves, the force is in the direction of pushing it back to its equilibrium position.
- When it gets back to its equilibrium, it’s still moving so it overshoots.
Model system: Mass on a Spring

- Consider a cart of mass m attached to a light (mass of spring $\ll m$) spring.
- Choose the coordinate system so that when the cart is at 0 the spring is at its rest length.
- Recall the properties of a (nice) spring.
 - When it is pulled or pushed on both ends it changes its length.

$$T = k\Delta l$$

Analyzing the forces: cart & spring

- FBD: What are the forces acting on the cart?

$T_{s\to c}$
$N_{t\to c}$
$W_{e\to c}$
Doing the Math: The Equation of Motion

- The N2 equation for the cart is

\[a = \frac{F_{\text{net}}}{m} = -\frac{kx}{m} = -\left(\frac{k}{m}\right)x \]

- What kind of a quantity is \(\frac{k}{m} \)?

\[
\begin{bmatrix}
 k \\
 m
\end{bmatrix} = \]

Mathematical structure

- Express \(a = \frac{F_{\text{net}}}{m} \) in terms of derivatives.

\[\frac{d^2x}{dt^2} = -\omega_0^2 x \]

- Except for the constant, this is like having a functions that is its own second derivative.

\[\frac{d^2f}{dt^2} = -f \]

- In calculus, we learn that \(\sin(t) \) and \(\cos(t) \) work like this. How about: \(x = \cos t \)?