March 27, 2013 Physics 132 Prof. E. F. Redish

■Theme Music: Fleetwood Mac Silver Springs

Cartoon: Pat Brady

 Rose is Rose

3/27/13
Physics 132
1

Foothold ideas: Kirchhoff's principles

1. Flow rule: The total amount of current flowing
 into any volume in an electrical network equals the amount flowing out.
2. Ohm's law: in a resistor, $\Delta V=I R$
3. Loop rule: Following around any loop in an electrical network the potential has to come back to the same value (sum of drops = sum of rises).
■ The Constant Potential Corollary: Along any part of a circuit with 0 resistance, $\Delta V=0$, i.e., V is constant.

Foothold ideas: Harmonic oscillation

\square There is an equilibrium (balance) point
 where the mass can stay without moving.

- Whichever way the mass moves, the force is in the direction of pushing it back to its equilibrium position.
- When it gets back to its equilibrium, it's still moving so it overshoots.

Model system: Mass on a Spring

■ Consider a cart of mass m attached to a light (mass of spring $\ll m$) spring.
■ Choose the coordinate system so that when the cart is at 0 the spring it at its rest length
\square Recall the properties of a (nice) spring.

- When it is pulled or pushed on both ends it changes its length.

$$
T=k \Delta l
$$

Analyzing the forces: cart \& spring

■ FBD:
What are
the forces
acting on the cart?

Doing the Math:
 The Equation of Motion

■ The N2 equation for the cart is

$$
a=F_{n e t} / m=-k x / m=-\left(\frac{k}{m}\right) x
$$

■ What kind of a quantity is k / m ?

$$
\left[\frac{k}{m}\right]=
$$

Mathematical structure

■ Express $a=F^{\text {net }} / m$ in terms of derivatives.

$$
\frac{d^{2} x}{d t^{2}}=-\omega_{0}^{2} x
$$

■ Except for the constant, this is like having a functions that is its own second derivative.

$$
\frac{d^{2} f}{d t^{2}}=-f
$$

\square In calculus, we learn that $\sin (\mathrm{t})$ and $\cos (\mathrm{t})$ work like this. How about: $x=\cos t$?

