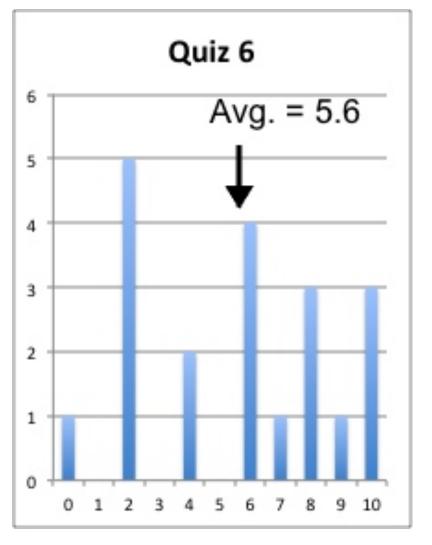
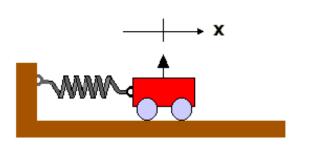
■ Theme Music: Fleetwood Mac Silver Springs


Cartoon: Pat Brady Rose is Rose

Quiz 6

	6.1	6.2.1	6.2.2	6.2.3
Α	0%	0%	10%	0%
В	5%	70%	25%	55%
C	45%	5%	45%	15%
D	10%	20%	15%	25%
E	45%	5%	5%	5%
F	65%			
G	5%			

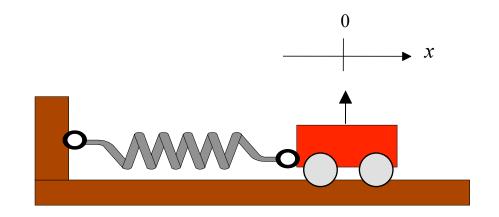
Foothold ideas: Kirchhoff's principles

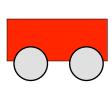

- 1. Flow rule: The total amount of current flowing into any volume in an electrical network equals the amount flowing out.
- 2. Ohm's law: in a resistor, $\Delta V = IR$
- 3. Loop rule: Following around any loop in an electrical network the potential has to come back to the same value (sum of drops = sum of rises).
- The Constant Potential Corollary: Along any part of a circuit with 0 resistance, $\Delta V = 0$, i.e., V is constant.

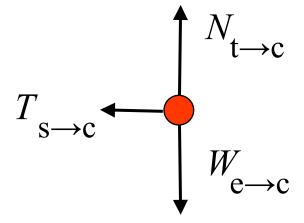
Foothold ideas: Harmonic oscillation

- There is an equilibrium (balance) point where the mass can stay without moving.
- Whichever way the mass moves, the force is in the direction of pushing it back to its equilibrium position.
- When it gets back to its equilibrium, it's still moving so it overshoots.

Model system: Mass on a Spring


- Consider a cart of mass m attached to a light (mass of spring << m) spring.
- Choose the coordinate system so that when the cart is at 0 the spring it at its rest length
- Recall the properties of a (nice) spring.
 - When it is pulled or pushed on both ends it changes its length.


$$T = k\Delta l$$


Analyzing the forces: cart & spring

■ FBD:

What are the forces acting on the cart?

6

Doing the Math: The Equation of Motion

■ The N2 equation for the cart is

$$a = \frac{F_{net}}{m} = -\frac{kx}{m} = -\left(\frac{k}{m}\right)x$$

■ What kind of a quantity is k/m?

$$\left\lceil \frac{k}{m} \right\rceil =$$

Mathematical structure

 \blacksquare Express $a = F^{\text{net}}/m$ in terms of derivatives.

$$\frac{d^2x}{dt^2} = -\omega_0^2 x$$

■ Except for the constant, this is like having a functions that is its own second derivative.

$$\frac{d^2f}{dt^2} = -f$$

In calculus, we learn that sin(t) and cos(t) work like this. How about: x = cos t?