March 15, 2013 Physics 132 Prof. E. F. Redish

## $\square$ Theme Music: Benny Goodman

 AC/DC Current■ Cartoon: Bob Thaves
Frank \& Ernest


## Electric circuit elements

- Batteries - devices that maintain a constant electrical pressure difference across their terminals (like a water pump that raises water to a certain height).
- Resistances - devices that have significant drag and oppose current. Pressure will drop across them.
- Capacitors - devices that can maintain a separation of charge if there is a potential difference maintained across the,
Wires - have very little resistance. We can ignore the drag in them (mostly - as long as there are other resistances present).




## Foothold ideas: Kirchhoff's principles

1. Flow rule: The total amount of current flowing into any volume in an electrical network equals the amount flowing out.
2. Ohm's law: in a resistor, $\quad \Delta V=I R$
3. Loop rule: Following around any loop in an electrical network the potential has to come back to the same value (sum of drops = sum of rises).

## Very useful heuristic

■ The Constant Potential Corollary (CPC)

- Along any part of a circuit with 0 resistance, then $\Delta V=0$, i.e., the voltage is constant since in any circuit element

$$
\begin{aligned}
& \Delta V=I R \\
& R=0 \Rightarrow \Delta V=0 \\
& (\text { even if } I \neq 0)
\end{aligned}
$$

## Electric Power

$\square$ The rate at which electric energy is depleted from a battery or dissipated (into heat or light) in a resistor is

$$
\text { Power }=I \Delta V
$$

## Units

| ■ Current ( $I$ ) | Ampere $=$ Coulomb/sec |
| :---: | :---: |
| ■ Voltage ( $V$ ) | Volt $=$ Joule/Coulomb |
| ■ E-Field ( $E$ ) | Newton/Coulomb = Volt/meter |
| - Resistance ( $R$ ) | $\mathbf{O h m}=$ Volt/Ampere |
| ■ Capacitance ( $C$ ) | Farad $=$ Volt/Coulomb |
| $\square$ Power ( $P$ ) | Watt $=$ Joule/sec |

## Series and parallel

■ Series

- Same current flows through both devices

$$
\begin{array}{ll} 
& I=\frac{\Delta V_{A}}{R_{A}}=\frac{\Delta V_{B}}{R_{B}} \\
R_{\mathrm{A}} & \frac{\Delta V_{A}}{\Delta V_{B}}=\frac{R_{A}}{R_{B}} \\
\Delta V=\Delta V_{A}+\Delta V_{B} \\
R_{\mathrm{B}} & =I\left(R_{A}+R_{B}\right)
\end{array}
$$

- Parallel


