- Theme Music: Duke Ellington Take the A Train

- Cartoon: Lynn Johnson

For Better or for Worse

Foothold principles: Newton's Laws

- Newton 0:
- An object responds only to the forces it feels and only at the instant it feels them.
- Newton 1:
- An object that feels a net force of 0 keeps moving with the same velocity (which may $=0$).
- Newton 2:
- An object that is acted upon by other objects changes its velocity according to the rule

$$
\vec{a}_{A}=\vec{F}_{A}^{n e t} / m_{A}
$$

- Newton 3:
- When two objects interact the forces they exert on each other are equal and opposite.

$$
\vec{F}_{A \rightarrow B}^{\text {type }}=-\vec{F}_{B \rightarrow A}^{\text {type }}
$$

Foothold ideas:
 Kinetic Energy and Work

- Newton's laws tell us how velocity changes. The Work-Energy theorem tells us how speed (independent of direction) changes.
- Kinetic energy $=\frac{1}{2} m v^{2}$
- Work done by a force $=F_{x} \Delta x$ or $F_{\|} \Delta r$ (part of force $\|$ to displacement)
- Work-energy theorem: $\Delta\left(\frac{1}{2} m v^{2}\right)=F_{11}^{n t t} \Delta r \quad$ (small step)

Foothold ideas:
 Potential Energy

- The work done by some forces only depends on the change in position. Then it can be written

U is called a potential energy.

$$
\vec{F} \cdot \Delta \vec{r}=-\Delta U
$$

- For gravity, $\quad U_{\text {gravity }}=m g h$

For a spring, $\quad U_{\text {spring }}=1 / 2 k x^{2}$
For electric force, $\quad U_{\text {electric }}=k_{C} Q_{1} Q_{2} / r_{12}$

- Potential to force: $\vec{F}=-\frac{\Delta U}{\Delta \vec{r}}=-\left(\frac{\partial U}{\partial x} \hat{i}+\frac{\partial U}{\partial y} \hat{j}+\frac{\partial U}{\partial z} \hat{k}\right)=-\vec{\nabla} U$

The force associated with a PE at a given place points "downhill" - in the direction where the PE falls the fastest.

Foothold ideas: Energy

- Kinds of energy (macro)
- Kinetic
- Potential
- Thermal
- Chemical
- Kinds of energy (micro)?
- First law of thermodynamics
- Conservation of total energy

Foothold ideas: Inter-atomic interactions

- The interaction between atoms arises from
 the combination of the electrical forces of its components (electrons and nuclei).
- It can be quite complex and involve electron sharing and chemical bonds.
- The complexity arises from the quantum character of electrons.
- Despite this complexity, a simple potential model summarizes many features of a two-atom interaction.

Foothold ideas: Inter-atomic potentials

- The interaction between neutral atoms includes an attraction at long-range that arises
 from the fluctuating charge distribution in each atom; the PE behaves like $1 / r^{6}$.
- When the atoms are pressed close, they repel each other strongly; both because the +nuclei repel and because of the Pauli principle (two electrons cannot be in the same state).
- Two commonly used models are:
- The Lennard-Jones potential ($\mathrm{A} / r^{12}-\mathrm{B} / r^{6}$)
- The Morse potential (exponentials)

Foothold principles: Randomness

- Matter is made of of molecules in constant motion and interaction. This motion moves stuff around.
- If the distribution of a chemical is non-uniform, the randomness of molecular motion will tend to result in molecules moving from more dense regions to less.
- This is not directed but is an emergent phenomenon arising from the combination of random motion and non-uniform concentration.

Foothold ideas:
 Thermal Equilibrium \& Equipartition

- Degrees of freedom - where energy can
 reside in a system.
- Thermodynamic equilibrium is dynamic. Changes keep happening, but equal amounts in both directions.
- Equipartition - At equilibrium, the same energy density in all space and in all DoFs.

Foothold ideas:
 Microstate and macrostates

- A microstate is a specific distribution of energy telling how much is in each DoF.
- A macrostate is a statement about some average properties of a state (pressure, temperature, density,...).
- A given macrostate corresponds to many microstates.
- If the system is sufficiently random, each microstate is equally probable. As a result, the probability of seeing a given macrostate depends on how many microstates it corresponds to.

Foothold ideas:
Thermal Equilibrium \& Equipartition

- Degrees of freedom - where energy can
 reside in a system.
- Thermodynamic equilibrium is dynamic Changes keep happening, but equal amounts in both directions.
- Equipartition - At equilibrium, the same energy density in all space and in all DoFs.

Foothold ideas:

Entropy

- Entropy - an extensive measure of how well energy is spread in an object.
- Entropy measures -
- The number of microstates in a given macrostate

$$
S=k_{B} \ln (W)
$$

- The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

Foothold ideas: The Second Law of Thermodynamics

- Systems composed of a large number of particles spontaneously move toward the thermodynamic (macro) state that correspond to the largest possible number of particle arrangements (microstates).
- The $2^{\text {nd }}$ law is probabilistic. Systems show fluctuations violations that get proportionately smaller as N gets large.
- Systems that are not in thermodynamic equilibrium will spontaneously transform so as to increase the entropy.
- The entropy of any particular system can decrease as long as the entropy of the rest of the universe increases more.
- The universe tends towards states of increasing chaos and uniformity. (Is this contradictory?)
3/1/13

Foothold ideas: Transforming energy

- Internal energy: thermal plus chemical
- Enthalpy:

$$
\Delta H=\Delta U+p \Delta V
$$

internal plus amount needed to make space at constant p

- Gibbs free energy:

$$
\Delta G=\Delta H-T \Delta S
$$ enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped

- A process will go spontaneously if $\Delta G<0$.

Spontaneity...

The sign of the Gibbs Free Energy change indicates spontaneity!

$$
\begin{gathered}
\Delta G<0 \rightarrow \Delta S_{\text {total }}>0 \rightarrow \text { spontaneous } \\
\Delta G>0 \rightarrow \Delta S_{\text {total }}<0 \rightarrow \text { not spontaneous }
\end{gathered}
$$

Foothold ideas: Energy distribution

- Due to the randomness of thermal collisions, ever in (local) thermal equilibrium a range of energy is found in each degree of freedom.
- The probability of finding an energy E is proportional to the Boltzmann factor

$$
\begin{aligned}
& P(E) \propto e^{-E / k_{B} T}(\text { for one DoF) } \\
& \left.P(E) \propto e^{-E / R T} \quad \text { (for one mole }\right)
\end{aligned}
$$

- At $300 \mathrm{~K}, k_{\mathrm{B}} T \sim 1 / 40 \mathrm{eV}$

$$
N_{\mathrm{A}} k_{\mathrm{B}} T=R T \sim 2.4 \mathrm{~kJ} / \mathrm{mol}
$$

Foothold ideas:
 Charge - A hidden property of matter

- Matter is made up of two kinds of electrical
 matter (positive and negative) that usually cancel very precisely.
- Like charges repel, unlike charges attract.
- Bringing an unbalanced charge up to neutral matter polarizes it, so both kinds of charge attract neutral matter
- The total amount of charge (pos - neg) is constant.

Foothold ideas:

Conductors and Insulators

- Insulators
- In some matter, the charges they contain
 are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there (like spreading peanut butter).
- Conductors
- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).

Foothold idea:
 Coulomb's Law

- All objects attract each other with a force
 whose magnitude is given by

$$
\vec{F}_{q \rightarrow Q}=-\vec{F}_{Q \rightarrow q}=\frac{k_{C} q Q}{r_{q Q}^{2}} \hat{r}_{q \rightarrow Q}
$$

- k_{C} is put in to make the units come out right.

$$
k_{C}=9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}
$$

Foothold ideas:

Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}} \quad \text { No vectors! }
$$

- The potential energy between many charges is

$$
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{c} Q_{i} Q_{j}}{r_{i j}} \quad \text { Just add up }
$$

Foothold idea:
 Fields

- Test particle
- We pay attention to what force it feels.

We assume it does not have any affect on the source
 particles.

- Source particles
- We pay attention to the forces they exert and assume they do not move.
- Physical field
- We consider what force a test particle would feel if it were at a particular point in space and divide by its coupling strength to the force. This gives a vector at each point in space.

$$
\vec{g}=\frac{1}{m} \vec{W}_{E \rightarrow m} \quad \vec{E}=\frac{1}{q} \vec{F}_{\text {all charges } \rightarrow q} \quad V=\frac{1}{q} U_{\text {all charges } \rightarrow \mathrm{q}}^{\text {elec }}
$$

Foothold ideas: Electric potential energy and potential

- The potential energy between two charges is

$$
\begin{gathered}
U_{12}^{\text {elec }}=\frac{k_{c} Q_{1} Q_{2}}{r_{12}} \\
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
\end{gathered}
$$

- The potential energy of many charges is
- The potential energy added by adding a test charge q is

$\Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{c} q Q_{i}}{r_{i q}}=q V$	
22	= the voltage at the position of the test charge

Units

- Gravitational field units of $g=$ Newtons/kg
- Electric field units of $E=$ Newtons/C
- Electric potential

$$
\text { units of } V=\text { Joules } / \mathrm{C}=\text { Volts }
$$

- Energy $=q V$ so $e \Delta V=$ the energy gained by an electron (charge $e=1.6 \times 10^{-19} \mathrm{C}$) in moving through a change of ΔV volts.

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

Foothold ideas: Electric charges in materials

- The electric field inside the body of a static conductor (no moving charges) is zero.
- The entire body of a static conductor (no charges moving through it) is at the same potential.
- The average electric field in an insulator is reduced (due to the polarization of the material by the field) by a factor that is a property of the material: the dielectric constant, κ. (Sometimes written in biology as ε) Since κ is the ratio of two fields, it is dimensionless.

Foothold ideas: Capacitors

$$
\begin{aligned}
& \Delta V=E \Delta x=E d \\
& E=4 \pi k_{C} \sigma=4 \pi k_{C} \frac{Q}{A} \Rightarrow Q=\left(\frac{A}{4 \pi k_{C}}\right) E \\
& Q=\left(\frac{A}{4 \pi k_{C} d}\right) \Delta V \\
& Q=C \Delta V \\
& C=\frac{K \varepsilon_{\ll} A}{d} \\
& \begin{array}{l}
\text { What does this } \\
\text { "Q" stand for? }
\end{array} \\
& \begin{array}{l}
\text { If plates are separated } \\
\text { by a material }
\end{array}
\end{aligned}
$$

Energy stored $=\frac{1}{2} Q \Delta V$

