- Theme Music: Duke Ellington

 Take the A Train
- <u>Cartoon:</u> Lynn Johnson *For Better or for Worse*

Foothold principles: Newton's Laws

• Newton 0:

An object responds only to the forces it feels and only at the instant it feels them.

• Newton 1:

- An object that feels a net force of 0 keeps moving with the same velocity (which may = 0).

• Newton 2:

 An object that is acted upon by other objects changes its velocity according to the rule

$$\vec{a}_A = \vec{F}_A^{net} / m_A$$

• Newton 3:

 When two objects interact the forces they exert on each other are equal and opposite.

$$\vec{F}_{A \to B}^{type} = -\vec{F}_{B \to A}^{type}$$

Foothold ideas: Kinetic Energy and Work

- Newton's laws tell us how velocity changes. The Work-Energy theorem tells us how speed (independent of direction) changes.
- Kinetic energy = $\frac{1}{2}mv^2$
- Work done by a force = $F_x \Delta x$ or $F_{\parallel} \Delta r$ (part of force || to displacement)
- Work-energy theorem: $\Delta(\frac{1}{2}mv^2) = F_{\parallel}^{net} \Delta r$ (small step) $\Delta(\frac{1}{2}mv^2) = \int_{i}^{f} F_{\parallel}^{net} dr$ (any size step)

Foothold ideas: Potential Energy

• The work done by some forces only depends on the change in position. Then it can be written

$$\vec{F} \cdot \Delta \vec{r} = -\Delta U$$

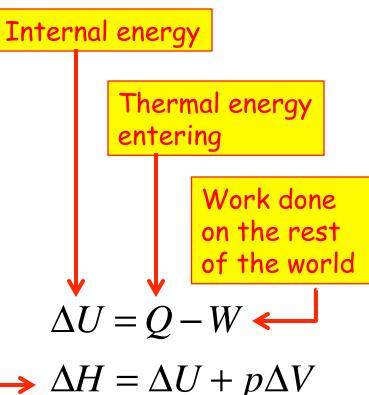
U is called a *potential energy*.

• For gravity,
$$U_{gravity} = mgh$$

For a spring, $U_{spring} = \frac{1}{2} kx^2$
For electric force, $U_{electric} = k_C Q_1 Q_2 / r_{12}$

• Potential to force:
$$\vec{F} = -\frac{\Delta U}{\Delta \vec{r}} = -\left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j} + \frac{\partial U}{\partial z}\hat{k}\right) = -\vec{\nabla}U$$

The force associated with a PE at a given place points "downhill" – in the direction where the PE falls the fastest.



Foothold ideas: Energy

- Kinds of energy (macro)
 - Kinetic
 - Potential
 - Thermal
 - Chemical
- Kinds of energy (micro)?
- First law of thermodynamics
 - Conservation of total energy

Energy needed to add internal energy at constant pressure (Enthalpy)

Foothold ideas: Inter-atomic interactions

- The interaction between atoms arises from the combination of the electrical forces of its components (electrons and nuclei).
 - It can be quite complex and involve electron sharing and chemical bonds.
 - The complexity arises from the quantum character of electrons.

3/1/13

• Despite this complexity, a simple potential model summarizes many features of a two-atom interaction.

Foothold ideas: Inter-atomic potentials

- The interaction between neutral atoms includes an attraction at long-range that arises from the fluctuating charge distribution in each atom; the PE behaves like $1/r^6$.
- When the atoms are pressed close, they repel each other strongly; both because the +nuclei repel and because of the Pauli principle (two electrons cannot be in the same state).
- Two commonly used models are:
 - The Lennard-Jones potential $(A/r^{12}-B/r^6)$
 - The Morse potential (exponentials)

Foothold principles: Randomness

- Matter is made of of molecules in constant motion and interaction. This motion moves stuff around.
- If the distribution of a chemical is non-uniform, the randomness of molecular motion will tend to result in molecules moving from more dense regions to less.
- This is not directed but is an emergent phenomenon arising from the combination of random motion and non-uniform concentration.

3/1/13

Foothold ideas: Thermal Equilibrium & Equipartition

- Degrees of freedom where energy can reside in a system.
- Thermodynamic equilibrium is dynamic.
 Changes keep happening, but equal amounts in both directions.
- Equipartition At equilibrium, the same energy density in all space and in all DoFs.

Foothold ideas: Microstate and macrostates

- A *microstate* is a specific distribution of energy telling how much is in each DoF.
- A *macrostate* is a statement about some average properties of a state (pressure, temperature, density,...).
 - A given macrostate corresponds to many microstates.
- If the system is sufficiently random, each microstate is equally probable. As a result, the probability of seeing a given macrostate depends on how many microstates it corresponds to.

Foothold ideas: Thermal Equilibrium & Equipartition

- **Degrees of freedom** where energy can reside in a system.
- Thermodynamic equilibrium is dynamic Changes keep happening, but equal amounts in both directions.
- *Equipartition* At equilibrium, the same energy density in all space and in all DoFs.

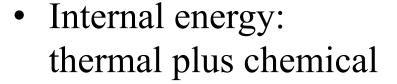
Foothold ideas: Entropy

- *Entropy* an extensive measure of how well energy is spread in an object.
- Entropy measures
 - The number of microstates in a given macrostate

$$S = k_B \ln(W)$$

- The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

3/1/13


$$\Delta S = \frac{Q}{T}$$

Foothold ideas:

The Second Law of Thermodynamics

- Systems composed of a large number of particles spontaneously move toward the thermodynamic (macro) state that correspond to the largest possible number of particle arrangements (microstates).
 - The 2nd law is probabilistic. Systems show fluctuations violations that get proportionately smaller as N gets large.
- Systems that are not in thermodynamic equilibrium will spontaneously transform so as to increase the entropy.
 - The entropy of any particular system can decrease as long as the entropy of the rest of the universe increases more.
- The universe tends towards states of increasing chaos and uniformity. (Is this contradictory?)

Foothold ideas: Transforming energy

 ΔU

- Enthalpy: $\Delta H = \Delta U + p \Delta V$ internal plus amount needed to make space at constant p
- Gibbs free energy: $\Delta G = \Delta H T \Delta S$ enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped
- A process will go spontaneously if $\Delta G < 0$.

Spontaneity...

$$\Delta G = \Delta H - T\Delta S$$

$$/ \qquad \uparrow \qquad \uparrow$$

$$-T\Delta S_{\text{total}} \qquad -T\Delta S_{\text{surroundings}} \qquad T\Delta S_{\text{system}}$$

The sign of the Gibbs Free Energy change indicates spontaneity!

$$\Delta G < 0 \rightarrow \Delta S_{\text{total}} > 0 \rightarrow \text{spontaneous}$$

$$\Delta G > 0 \rightarrow \Delta S_{\text{total}} < 0 \rightarrow \text{not spontaneous}$$

8/1/13 Physics 132 15

Foothold ideas: Energy distribution

- Due to the randomness of thermal collisions, ever in (local) thermal equilibrium a range of energy is found in each degree of freedom.
- The probability of finding an energy E is proportional to the Boltzmann factor

$$P(E) \propto e^{-\frac{E}{k_B T}}$$
 (for one DoF)
 $P(E) \propto e^{-\frac{E}{RT}}$ (for one mole)

• At 300 K, $k_{\rm B}T \sim 1/40 \text{ eV}$ $N_{\rm A}k_{\rm B}T = RT \sim 2.4 \text{ kJ/mol}$

Foothold ideas:

Charge – A hidden property of matter

- Matter is made up of two kinds of electrical matter (positive and negative) that usually cancel very precisely.
- Like charges repel, unlike charges attract.
- Bringing an unbalanced charge up to neutral matter polarizes it, so both kinds of charge attract neutral matter
- The total amount of charge (pos neg) is constant.

Foothold ideas: Conductors and Insulators

Insulators

- In some matter, the charges they contain are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there (like spreading peanut butter).

Conductors

- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).

Foothold idea: Coulomb's Law

• All objects attract each other with a force whose magnitude is given by

$$\vec{F}_{q \to Q} = -\vec{F}_{Q \to q} = \frac{k_C q Q}{r_{qQ}^2} \hat{r}_{q \to Q}$$

• $k_{\rm C}$ is put in to make the units come out right.

$$k_C = 9 \times 10^9 \text{ N-m}^2 / \text{C}^2$$

Foothold ideas:

Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$U_{12}^{elec} = \frac{k_C Q_1 Q_2}{r_{12}}$$

No vectors!

• The potential energy between many charges is

$$U_{12...N}^{elec} = \sum_{i < j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{ij}}$$

Just add up all pairs!

Foothold idea: Fields

• Test particle

We pay attention to what force it feels.
 We assume it does not have any affect on the source particles.

Source particles

 We pay attention to the forces they exert and assume they do not move.

Physical field

 We consider what force a test particle would feel if it were at a particular point in space and divide by its coupling strength to the force. This gives a vector at each point in space.

$$\vec{g} = \frac{1}{m} \vec{W}_{E \to m}$$
 $\vec{E} = \frac{1}{q} \vec{F}_{\text{all charges} \to q}$ $V = \frac{1}{q} U_{\text{all charges} \to q}^{elec}$

Foothold ideas: Electric potential energy and potential

- The potential energy between two charges is
- The potential energy of many charges is
- The potential energy added by adding a test charge q is

$$U_{12}^{elec} = \frac{k_{C}Q_{1}Q_{2}}{r_{12}}$$

$$U_{12...N}^{elec} = \sum_{i < j=1}^{N} \frac{k_{C}Q_{i}Q_{j}}{r_{ij}}$$

$$\Delta U_q^{elec} = \sum_{i=1}^N \frac{k_C q Q_i}{r_{iq}} = qV$$

= the voltage at the position of the test charge

Units

- Gravitational field units of g = Newtons/kg
- Electric field units of E = Newtons/C
- Electric potential units of V = Joules/C = Volts
- Energy = qV so $e\Delta V$ = the energy gained by an electron (charge $e = 1.6 \times 10^{-19} \,\text{C}$) in moving through a change of ΔV volts.

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

Foothold ideas: Electric charges in materials

- The electric field inside the body of a static conductor (no moving charges) is zero.
- The entire body of a static conductor (no charges moving through it) is at the same potential.
- The average electric field in an insulator is reduced (due to the polarization of the material by the field) by a factor that is a property of the material: the dielectric constant, κ. (Sometimes written in biology as ε) Since κ is the ratio of two fields, it is dimensionless.

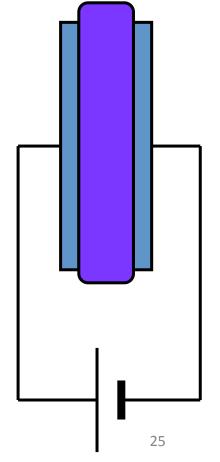
Foothold ideas: Capacitors

$$\Delta V = E\Delta x = Ed$$

$$E = 4\pi k_C \sigma = 4\pi k_C \frac{Q}{A} \implies Q = \left(\frac{A}{4\pi k_C}\right) E$$

$$Q = \left(\frac{A}{4\pi k_C d}\right) \Delta V$$

 $Q = C\Delta V$


What does this "Q" stand for?

$$C = \frac{\kappa \xi_0 A}{d}$$

If plates are separated by a material

Energy stored
$$=\frac{1}{2}Q\Delta V_{\text{Physics }132}$$

