February 22, 2013
Physics 132 Prof. E. F. Redish
■ Theme Music: Joni Mitchell Electricity
■ Cartoon: Bill Watterson Calvin \& Hobbes

2/22/13

Physics 132

1

Recap: Scalar Fields

- A field is a concept we use to describe anything that varies in space. It is a set of values assigned to each point in space (e.g., temperature or wind speed).
- An potential energy field is the assignment of a potential energy that a test charge would feel (add to the system) if placed at each point in space.
- A gravitational, electric potential is a potential energy field with something (a "coupling strength") divided out so the field no longer depends on what test object is used.

$$
g h=\frac{\Delta U_{m}^{\text {grav }}}{m} \quad V=\frac{\Delta U_{q}^{\text {electric }}}{q} \quad V(\vec{r})=-\int_{\text {ref. pt. }}^{\vec{r}} \vec{E}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}
$$

Foothold ideas:

Electric potential energy and potential

■ The potential energy between two charges is

$$
\begin{gathered}
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}} \\
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
\end{gathered}
$$

■ The potential energy of many charges is
$■$ The potential energy added by adding a test charge q is

$$
\Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{C} q Q_{i}}{r_{i q}}=q V
$$

Positive test charge near a single $(+)$ source charge

Negative test charge near a single $(+)$ source charge

Potential energy
of a negative test charge near a positive source.

Electric Potential of a negative test charge near a positive source.

Physics 132

Representations

- Representing E
- Arrows (length shows $|E|$)
- Arrows (fixed length, color or width shows $|E|$)
- Field lines (show direction only)
- Field lines (color shows $|E|$)

■ Representing V

- 1D: Graph
- 2D: Isoclines (lines of equal value)
- 3D: Equipotential surfaces (surfaces of = value)

