- Theme Music: Linkin Park

High Voltage

- Cartoon: Wiley Miller Non-Sequitur

2/20/13
Physics 132

QulZ 3		
	3.1	3.3 .1
A	55%	20%
B	25%	55%
C	85%	25%
D	30%	

3.2

$$
\begin{aligned}
\Delta S & =\frac{Q_{A}}{T_{A}}+\frac{Q_{B}}{T_{B}}=\frac{-0.5 \mathrm{~J}}{350 \mathrm{~K}}+\frac{0.5 \mathrm{~J}}{250 \mathrm{~K}} \\
& =-1.4 \times 10^{-3} \mathrm{~J} / \mathrm{K}+2.0 \times 10^{-3} \mathrm{~J} / \mathrm{K}=+0.6 \times 10^{-3} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

3.3.1

$$
\frac{p\left(E_{1}\right)}{p\left(E_{0}\right)}=\frac{e^{-E_{1} / k_{B} T}}{\substack{20 / 13}} e^{-E_{0} / k_{B} T} e^{-\Delta E / k_{B} T}=e^{-0.015 / 0.025}=e^{-0.6}=0.55
$$

Foothold idea:

Fields

- Test particle
- We pay attention to what force it feels.

We assume it does not have any affect on the source
 particles.

- Source particles
- We pay attention to the forces they exert and assume they do not move.
- Physical field
- We consider what force a test particle would feel if it were at a particular point in space and divide by its coupling strength to the force. This gives a vector at each point in space.

$$
\vec{g}=\frac{1}{m} \vec{W}_{E \rightarrow m} \quad \vec{E}=\frac{1}{q} \vec{F}_{\text {all charges } \rightarrow q} \quad V=\frac{1}{q} U_{\text {all charges } \rightarrow \mathrm{q}}^{\text {elec }}
$$

Foothold ideas:

 Electric potential energy and potential- The potential energy between two charges is

$$
\begin{aligned}
& \text { en } U_{12}^{\text {elec }}=\frac{k_{c} Q_{1} Q_{2}}{r_{12}} \\
& U_{12 \ldots}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
\end{aligned}
$$

- The potential energy of many charges is
- The potential energy added by adding a test charge q is

$$
\Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{c} q Q_{i}}{r_{i q}}=q V
$$

Negative test charge near a single (+) source charge

Potential energy of a negative test charge near a positive source.

Electric Potential of a negative test charge near a positive source.

