- Theme Music: Human League

Together in Electric Dreams

- Cartoon: Bob Thaves

Frank \& Ernest

Foothold ideas:
Charge - A hidden property of matter

- Matter is made up of two kinds of electrical matter (positive and negative) that usually cancel very precisely.
- Like charges repel, unlike charges attract.
- Bringing an unbalanced charge up to neutral matter polarizes it, so both kinds of charge attract neutral matter
- The total amount of charge (pos - neg) is constant.

Foothold ideas:
 Conductors and Insulators

- Insulators
- In some matter, the charges they contain
 are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there (like spreading peanut butter).
- Conductors
- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).

Foothold idea:
 Coulomb' s Law

- All objects attract each other with a force
 whose magnitude is given by

$$
\vec{F}_{q \rightarrow Q}=-\vec{F}_{Q \rightarrow q}=\frac{k_{C} q Q}{r_{q Q}^{2}} \hat{r}_{q \rightarrow Q}
$$

- k_{C} is put in to make the units come out right.

$$
k_{C}=9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}
$$

Reading questions

- When discussing Coulomb's Law, we don't need to worry about the direction of the force that an object with charge Q exerts on an object with charge q if the charges are right next to each other. In other words if the are separated horizontally but not vertically so they fall on the same line. Is this correct?
- I don't understand the difference between the constants: R subscript $Q q$ and R subscript $Q->q$. It wasn't explained very well in the webpage 'Reading the content in Coulomb's law'. I feel like the first is describing the distance between charges Q and q while the second constant is describing the distance of the force acting on q from Q. But wouldn't these distances be the same? Why are there two variables?
- Why does the force of $r^{\wedge} 2 Q q$ fall as the square of the distance between two charges? What is the relationship that causes that to happen?

Foothold ideas: Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{c} Q_{1} Q_{2}}{r_{12}}
$$

No vectors!

- The potential energy between many charges is

$$
U_{12 \ldots N}^{\text {elec }_{N}}=\sum_{i<j=1}^{N} \frac{k_{c} Q_{i} Q_{j}}{r_{i j}} \quad \begin{gathered}
\text { Just add up } \\
\text { all pairs! }
\end{gathered}
$$

