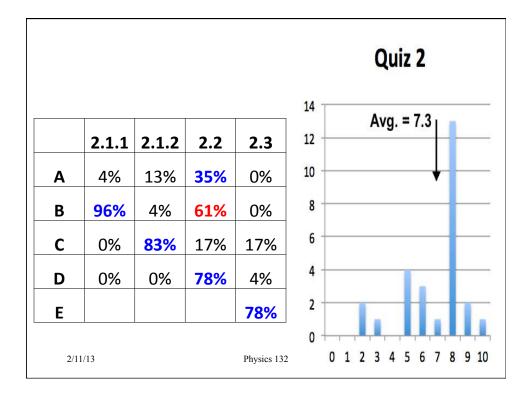
Physics 132 2/11/13

February 13, 2013 Physics 132 Prof. E. F. Redish


Theme Music: Doris Day

Que Sera, Sera

Cartoon: Bill Watterson

Calvin & Hobbes

HE SAYS HE HASNIT USED A SLIDE RULE SINCE, BECAUSE IN SCHOOL, THEY TAUSH HIM TO DO MATH ON A SLIDE RULE. CALCULATOR THAT CAN DO MORE FUNCTIONS THAN HE COUT FIRST OUT FIRST O



Prof. E. F. Redish

## Foothold ideas: Exponents and logarithms



- Power law:  $f(x) = x^2$   $g(x) = Ax^7$  a variable raised to a fixed power.
- Exponential:  $f(x) = e^x$   $g(N) = 2^N$   $h(z) = 10^z$  a fixed constant raised to a variable power.
- Logarithm: the inverse of the exponential.

$$x = e^{\ln(x)} \qquad x = \ln(e^x)$$
$$y = 10^{\log(y)} \qquad y = \log(10^y)$$

2/11/13 Physics 132

$$\log(2) = 0.3010$$

$$\log(e) = 0.4343$$

$$2^{N} = (10^{0.3010})^{N} \approx 10^{0.3N}$$

$$e^{x} = (10^{0.4343})^{x} \approx 10^{0.4x}$$

$$2^{N} = B$$

### $N\log 2 = \log B \Rightarrow N = \frac{\log B}{\log 2}$

# Foothold ideas: Entropy



- Entropy an extensive measure of how well energy is spread in a system.
- **■** Entropy measures
  - The number of microstates in a given macrostate  $S = k_B \ln(W)$
  - The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

$$\Delta S = \frac{Q}{T}$$

2/11/13

Physics 132

4

Physics 132 2/11/13

### Foothold ideas: Transforming energy



■ Internal energy: thermal plus chemical

 $\Delta U$ 

- Enthalpy:  $\Delta H = \Delta U + p\Delta V$  internal plus amount needed to make space at constant p
- Gibbs free energy:  $\Delta G = \Delta H T \Delta S$  enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped
- A process will go spontaneously if  $\Delta G < 0$ .

711/13 Physics 132 **5** 

Spontaneity...

$$\Delta G = \Delta H - T\Delta S$$

$$-T\Delta S_{\text{total}} - T\Delta S_{\text{surroundings}} T\Delta S_{\text{system}}$$

The sign of the Gibbs Free Energy change indicates spontaneity!

$$\Delta G < 0 \rightarrow \Delta S_{\text{total}} > 0 \rightarrow \text{spontaneous}$$
  
 $\Delta G > 0 \rightarrow \Delta S_{\text{total}} < 0 \rightarrow \text{not spontaneous}$ 

Prof. E. F. Redish

Physics 132 2/11/13

#### Foothold ideas: Energy distribution

- Due to the randomness of thermal collisions, ever in (local) thermal equilibrium a range of energy is found in each degree of freedom.
- The probability of finding an energy E is proportional to the Boltzmann factor

$$P(E) \propto e^{-E/k_B T}$$
 (for one DoF)  
 $P(E) \propto e^{-E/RT}$  (for one mole)

■ At 300 K,  $k_{\rm B}T \sim 1/40 \text{ eV}$  $N_{\rm A}k_{\rm B}T = RT \sim 2.4 \text{ kJ/mol}$ Physics 132

8

Prof. E. F. Redish