February 13, 2013

\square Theme Music: Doris Day

Que Sera, Sera

■ Cartoon: Bill Watterson

Calvin \& Hobbes

2/11/13

HE SAYS HE HASNT USED A SLIDE RULE SINCE, BECAUSE HE GOT A FIVE-BUCK CALCULATOR THAT CAN DO MORE FUNCTIONS THAN HE COULD FIGURE OUT IF HIS LIFE DEPENDED ON IT.

Physics 132

1

Quiz 2

	2.1.1	2.1.2	2.2	$\mathbf{2 . 3}$
A	4%	13%	35%	0%
B	96%	4%	61%	0%
C	0%	83%	17%	17%
D	0%	0%	78%	4%
E				78%

2/11/13
Physics 132

Foothold ideas:
 Exponents and logarithms

■ Power law: $\quad f(x)=x^{2} \quad g(x)=A x^{7}$ a variable raised to a fixed power.
\square Exponential: $\quad f(x)=e^{x} \quad g(N)=2^{N} \quad h(z)=10^{z}$
a fixed constant raised to a variable power.
■ Logarithm: the inverse of the exponential.

$$
\begin{array}{ll}
x=e^{\ln (x)} & x=\ln \left(e^{x}\right) \\
y=10^{\log (y)} & y=\log \left(10^{y}\right)
\end{array}
$$

$$
\begin{aligned}
& \log (2)=0.3010 \\
& \log (e)=0.4343 \\
& 2^{N}=\left(10^{0.3010}\right)^{N} \approx 10^{0.3 N} \\
& e^{x}=\left(10^{0.4343}\right)^{x} \approx 10^{0.4 x} \\
& 2^{N}=B \\
& N \log 2=\log B \Rightarrow N=\frac{\log B}{\log 2}
\end{aligned}
$$

Foothold ideas: Entropy

■ Entropy - an extensive measure of how well energy is spread in a system.

- Entropy measures
- The number of microstates in a given macrostate

$$
S=k_{B} \ln (W)
$$

- The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

Foothold ideas: Transforming energy

- Internal energy: thermal plus chemical
■ Enthalpy:
- Gibbs free energy:

$$
\Delta G=\Delta H-T \Delta S
$$ enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped

- A process will go spontaneously if $\Delta G<0$.

Spontaneity...

The sign of the Gibbs Free Energy change indicates spontaneity!

$$
\Delta G<0 \rightarrow \Delta S_{\text {total }}>0 \rightarrow \text { spontaneous }
$$

$$
\Delta G>0 \rightarrow \Delta S_{\text {total }}<0 \rightarrow \text { not spontaneous }
$$

Foothold ideas:

Energy distribution

$■$ Due to the randomness of thermal collisions, ever in (local) thermal equilibrium a range of energy is found in each degree of freedom.
■ The probability of finding an energy E is proportional to the Boltzmann factor

$$
\begin{aligned}
& P(E) \propto e^{-E / k_{B} T} \quad(\text { for one DoF) } \\
& \left.P(E) \propto e^{-E / R T} \quad \text { (for one mole }\right)
\end{aligned}
$$

- At 300 K ,

$$
\begin{aligned}
& k_{\mathrm{B}} T \sim 1 / 40 \mathrm{eV} \\
& N_{\mathrm{A}} k_{\mathrm{B}} T=R T \sim 2.4 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

