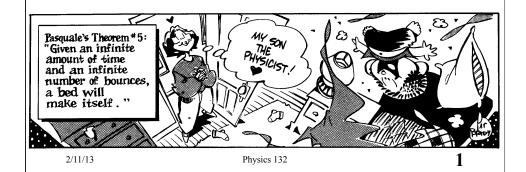
Physics 132 2/11/13

February 11, 2013

Physics 132


Prof. E. F. Redish

■ Theme Music: Desi Arnaz

Perhaps

■ Cartoon: Pat Brady

Rose is Rose

Foothold ideas: Entropy

- Entropy an extensive measure of how well energy is spread in a system.
- Entropy measures
 - The number of microstates in a given macrostate

$$S = k_B \ln(W)$$

- The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

$$\Delta S = \frac{Q}{T}$$

2/11/13

Physics 132

3

Prof. E. F. Redish

Physics 132 2/11/13

Foothold ideas: Transforming energy

■ Internal energy: thermal plus chemical

 ΔU

- Enthalpy: $\Delta H = \Delta U + p\Delta V$ internal plus amount needed to make space at constant p
- Gibbs free energy: $\Delta G = \Delta H T \Delta S$ enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped
- A process will go spontaneously if $\Delta G < 0$.

/11/13 Physics 132 **5**

Reading question

When the partition in the box is lifted the molecules can diffuse to the other side; however, they are not doing work because they are only diffusing due to random motion. Why then when you only put a hole in the partition and have the molecules travel to the other side and hit a turbine is that considered doing work? Is it simply because the molecules hit the fan and thus lose energy and give it to the turbine?

2/11/13 Physics 132 **6**

Prof. E. F. Redish